Lead Halide Perovskite Solar Cells
David J. Fisher
Materials Research Foundations Vol. 75
Publication Date 2020, 130 Pages
Print ISBN 978-1-64490-080-2 (release date June, 2020)
ePDF ISBN 978-1-64490-081-9
DOI: 10.21741/9781644900819
Lead halide perovskite materials have a huge potential in solar cell technology. They offer the combined advantages of low-cost preparation and high power-conversion efficiency. The present review focuses on the following topics: Power Conversion Efficiency; Electron Transport, Hole Transport and Interface Layers; Material Preparation; Cesium-Doped Lead-Halide Perovskites; Formamidinium-Doped Lead-Halide Perovskites; Methylammonium Lead-Halide Perovskites; Hysteresis, Stability and Toxicity Problems. The book references 334 original resources and includes their direct web link for in-depth reading.
Keywords
Solar Cells, Lead Halide Perovskite Materials, Cesium-Doped Lead-Halide Perovskites, Formamidinium-Doped Lead-Halide Perovskites, Methylammonium Lead-Halide Perovskites, Electron-Transport Layer, Hole-Transport Layer, Interface Layers, Hysteresis Problem, Stability Problem, Toxicity Problem
Table of contents
Introduction 1
Electron-Transport Layer 17
Hole-Transport Layer 18
Interface Layers 20
Preparation 22
Cesium-Doped Lead-Halide Perovskites 24
Formamidinium-Doped Lead-Halide Perovskites 36
Methylammonium Lead-Halide Perovskites 43
The Hysteresis Problem 91
The Stability Problem 92
The Toxicity Problem 95
Other Application 97
References 98
Keyword Index 99
About the Author 100
Outbound links:
https://en.wikipedia.org/wiki/Perovskite_solar_cell
Please contact us if you would like to have your laboratory link appear here.