Strength Calculation of Stiffened Structures Taking Into Consideration Realistic Weld Imperfections
C. Stapelfeld, B. Launert, H. Pasternak, N. Doynov, V. Michailov
download PDFAbstract. The topic of this article is the application of an analytical numerical hybrid model for a realistic prediction of imperfections induced by welds. At the beginning, the analytical model, its physical basis as well as the physical interrelationships are explained. This is followed by the explanation of the coupling procedure between the analytical model and the numerical calculation. Afterwards, the coupled hybrid model is applied on the investigated stiffened curved structure for the determination of the weld imperfections. An ultimate load analysis gives information about the load carrying behavior under axial loading. The results are compared against the traditional approach using eigenmode-based imperfections. The comparison underlines the potential additional utilization of load bearing capacity by this new approach.
Keywords
Strength Calculation, Welding, Imperfections, Load Capacity, Stiffened Structures, Curved Structures, Hybrid Model
Published online 9/11/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: C. Stapelfeld, B. Launert, H. Pasternak, N. Doynov, V. Michailov, ‘Strength Calculation of Stiffened Structures Taking Into Consideration Realistic Weld Imperfections’, Materials Research Proceedings, Vol. 6, pp 245-250, 2018
DOI: https://dx.doi.org/10.21741/9781945291890-39
The article was published as article 39 of the book Residual Stresses 2018
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Eurocode 3: Bemessung und Konstruktion von Stahlbauten (EN 1993-1-5). 2017
[2] K. L. Tran, C. Douthe, K. Sab, J. Dallot, L. Devaine, Buckling of Stiffened Curved Panels Under Uniform Axial Compression, Journal of Constructional Steel Research 103 (2014) 140-147. https://doi.org/10.1016/j.jcsr.2014.07.004
[3] T. Manco, J. P. Martins, C. Rigueiro, L. S. da Silva, Numerical Analysis of Stiffened Curved Panels Under Compression, International Conference on Steel and Aluminium Structures, Hong Kong, China, 2016 1-12 (No. 28).
[4] V. Michailov, R. Ossenbrink, C. Stapelfeld, Anwendungsnahe Schweißsimulation komplexer Strukturen, DVS-Berichte, Band 282, DVS Media GmbH, Düsseldorf, 2010.
[5] Y. G. Duan, Y. Vincent, F. Boilot, J. B. Leblond, J. M. Bergheau, Prediction of welding residual distortions of large structures using a local/global approach, Journal of Mechanical Science and Technologie 21, 10 (2007) 1700-1706. https://doi.org/10.1007/BF03177397
[6] D. Thikomirov, B. Rietman, K. Kose, M. Makkink, Computing Welding Distortion: Comparison of Different Industrially Applicable Methods, SHEMET 11 (2008) 195-202.
[7] C. Stapelfeld, Vereinfachte Modelle zur Schweißverzugsberechnung, Dissertation, Shaker Verlag, Aachen, 2016.
[8] N. N. Rykalin, Berechnung von Wärmevorgängen beim Schweißen, VEB Verlag Technik, Berlin, 1957.
[9] N. O. Okerblom, Schweißspannungen in Metallkonstruktionen, VEB Carl Marhold Verlag, Halle (Saale), 1959.
[10] S. A. Kuzminov, Svarochnie deformazii sudovich korpusnich konstrukzii, Verlag Sudostroenie Leningrad, Leningrad, 1974.