In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization

In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization

A. Zaouali, B. Girault, D. Gloaguen, F. Jordana, M.-J. Moya, P.-A. Dubos, V. Geoffroy, M. Schwartzkopf, T. Snow, H. Gupta, O. Shebanova, K. Schneider, B. Chang

download PDF

Abstract . The major challenge of Research in bone surgery is to develop strategies to repair large bone defects. Bone grafting technique is the gold standard to fill and heal these kind of defects. This work address the evolution of the mechanical properties as regard to bone regeneration microstructure. Managing such a time dependent (different regeneration step) and spatially resolved (strain field across natural/reconstructed bone interface) process is achieved through a quantitative analysis of the mechanical strain distribution supported by the mineral part of bone architecture (hydroxyapatite – Hap) and crystal microstructural features (size distribution, spatial pattern). SAXS/WAXS (Small- and Wide- Angle X-ray Scattering) experiments will highlight strain distribution respectively in the reconstructed bone’s collagen fibrils and minerals, through mechanical state mapping over a surgically created defect under in situ tensile testing on samples harvested at different regeneration stages.

Keywords
Bone regeneration, Mechanical properties, Small angle X-ray scattering, Wide angle X-ray scattering, Mineral crystals

Published online 9/11/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: A. Zaouali, B. Girault, D. Gloaguen, F. Jordana, M.-J. Moya, P.-A. Dubos, V. Geoffroy, M. Schwartzkopf, T. Snow, H. Gupta, O. Shebanova, K. Schneider, B. Chang, ‘In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization’, Materials Research Proceedings, Vol. 6, pp 117-122, 2018

DOI: https://dx.doi.org/10.21741/9781945291890-19

The article was published as article 19 of the book Residual Stresses 2018

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Zhang, J., Wang, H., Shi, J., Wang, Y., Lai, K., Yang, X., & Yang, G. (2016). Combination of simvastatin, calcium silicate/gypsum, and gelatin and bone regeneration in rabbit calvarial defects. Scientific reports, 6, 23422. https://doi.org/10.1038/srep23422
[2] Rossi, A. L., Barreto, I. C., Maciel, W. Q., Rosa, F. P., Rocha-Leão, M. H., Werckmann, J., Rossi, AM., Borojevic, R.& Farina, M. (2012). Ultrastructure of regenerated bone mineral surrounding hydroxyapatite–alginate composite and sintered hydroxyapatite. Bone, 50(1), 301-310. https://doi.org/10.1016/j.bone.2011.10.022
[3] Basham, M., Filik, J., Wharmby, M. T., Chang, P. C., El Kassaby, B., Gerring, M., & Sneddon, D. (2015). Data analysis workbench (DAWN). Journal of synchrotron radiation, 22(3), 853-858. https://doi.org/10.1107/S1600577515002283
[4] François, M., Ferreira, C., Reference specimens for x-ray stress analysis: The French experience. Metrologia 41 (2004) 33–40. https://doi.org/10.1088/0026-1394/41/1/005
[5] Hermans, P. H., & Weidinger, A. (1948). Quantitative x‐ray investigations on the crystallinity of cellulose fibers. A background analysis. Journal of Applied Physics, 19(5), 491-506. https://doi.org/10.1063/1.1698162
[6] Nakano, T., Kaibara, K., Ishimoto, T., Tabata, Y., & Umakoshi, Y. (2012). Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone, 51(4), 741-747. https://doi.org/10.1016/j.bone.2012.07.003
[7] Fratzl, P., Schreiber, S., & Boyde, A. (1996). Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcified tissue international, 58(5), 341-346. https://doi.org/10.1007/BF02509383
[8] Rinnerthaler, S., Roschger, P., Jakob, H. et et al., Scanning small angle X-ray scattering analysis of human bone sections. Calcified Tissue International, 1999. 64(5): p. 422-429. https://doi.org/10.1007/PL00005824