Addition Effect of Polymer Residues Reinforced with Glass Fiber in Adobe as to Thermal Comfort

$12.50

Addition Effect of Polymer Residues Reinforced with Glass Fiber in Adobe as to Thermal Comfort

R.M. Gandia, A.A.R. Corrêa, F.C. Gomes, Y.H. Kawano, S.V.G. Guffey, R.V. Neto

Abstract. This works aimed to analyze and compare the thermal conductivity of traditional adobe and adobe using different fiberglass reinforced polymer (FRP) residue contents. A chamber made of MPD (Medium Density Particleboard) of sugarcane bagasse was used. The box is insulated to the outside and lined internally by insulation layers, one styrofoam, and a thermal blanket. A source of heat, incandescent lamp, in the lower part emits a constant heat that by measurements of thermocouples can be analyzed the incoming heat and that which passes through the sample. FRP is a widely used material which, in addition to generating a large volume of waste, also has a high degradation time. The FRP residue was pre-processed. Five treatments were analyzed: 0; 2.5; 5.0; 7.5 and 10.0% of FRP of dry soil mass. The equation K=P.E/ΔT was used to calculate the energy coefficient. The samples were submitted to tests for 3.33 hours each, corresponding to 1000 measurements, being measured at the frequency of 12 seconds. A solar radiation meter was used to measure the radiation of the lamp. Each treatment was submitted to 5 replicates, and the intermediate value was chosen. The thermal conductivities were: 0.86; 0.79; 0.74; 0.72 and 0.65W.m°Cˉ¹ respectively for the treatments 0, 2.5, 5.0, 7.5 and 10.0%. It was concluded that the greater the addition of synthetic fiber residues in the adobe will decrease the thermal conductivity, thus improving its thermal comfort.

Keywords
Non-Conventional Materials, Sustainability, Residues, Thermal Conductivity

Published online , 7 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: R.M. Gandia, A.A.R. Corrêa, F.C. Gomes, Y.H. Kawano, S.V.G. Guffey, R.V. Neto, ‘Addition Effect of Polymer Residues Reinforced with Glass Fiber in Adobe as to Thermal Comfort’, Materials Research Proceedings, Vol. 7, pp 366-372, 2018

DOI: https://dx.doi.org/10.21741/9781945291838-34

The article was published as article 34 of the book Non-Conventional Materials and Technologies

References
[1] ABNT (1981) NBR-7180. Solo – Determinação do limite de plasticidade. Método de Ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 03p.
[2] ABNT (1984) NBR-7181. Análise Granulométrica. Método de Ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 13p.
[3] ABNT (1986) NBR-9776. Agregados – Determinação da massa específica de agregados miúdos por meio do frasco Chapman. Método de Ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 03p.
[4] ABNT (2004) NBR-6459.Determinação do Limite de Liquidez. Método de Ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 06p.
[5] ABNT (1982) NBR-7183. Determinação do Limite e Relação de Contração dos Solo. Método de Ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 03p.4
[6] BARBOSA, NP, GHAVAMI, K. Terra Crua para Edificações. Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. São Paulo: Ibracon, 2007, 2.
[7] CORRÊA, AAR, et al. Avaliação das propriedades físicas e mecânicas do adobe (tijolo de terra crua). Diss. Universidade Federal de Lavras, 2006.
[8] CORRÊA, A. A. R., et al. Incorporation of bamboo particles and “synthetic termite saliva” in adobes. Construction and Building Materials, 2015, 98: 250-256. https://doi.org/10.1016/j.conbuildmat.2015.06.009
[9] KEMERICH, PD da C, et al. Fibras de Vidro: Caracterização, disposição final e impactos ambientais gerados, Rev. Elet. Gestão, Educação e Tecnologia Ambiental, 2013, 10.10: 2112-2121.
[10] MOSQUERA, P, et al. Determination of the Thermal Conductivity in Adobe With Several Models. Journal of Heat Transfer, 2014, 136.3: 031303.
[11] ORTH, CM, BALDIN, N, ZANOTELLI, CT. Implicações do processo de fabricação do compósito plástico reforçado com fibra de vidro sobre o meio ambiente e a saúde do trabalhador: o caso da indústria automobilística. Revista Produção Online, Florianópolis, SC, v.12, n. 2, p. 537-556, 2012. https://doi.org/10.14488/1676-1901.v12i2.943
[12] PALME, M, GUERRA, J, ALFARO, S. Thermal performance of traditional and new concept houses in the ancient village of San Pedro de Atacama and surroundings. Sustainability, 2014, 6.6: 3321-3337. https://doi.org/10.3390/su6063321
[13] RUIZ HE, LUNA MA. Cartilla de pruebas de campo para selección de tierras en la fabricación de adobe. 1983.
[14] SILVA, A DA R. Estudo térmico e de materiais na construção de casas populares com blocos confeccionados a partir de um composto a base de cimento, gesso, eps e raspa de pneu., 2010. Universidade Federal do Rio Grande do Norte.
[15] SHUKLA, A, TIWARI, GN, SODHA, MS. Embodied energy analysis of adobe house. Renewable Energy, 2009, 34.3: 755-761. https://doi.org/10.1016/j.renene.2008.04.002
[16] SOLOS, Embrapa. Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de Solos: Rio de Janeiro, 2013.