Dry Etching Plasma Applied to Guadua Angustifolia Bamboo Fibers: Influence on their Mechanical Properties and Surface Appearance

$12.50

Dry Etching Plasma Applied to Guadua Angustifolia Bamboo Fibers: Influence on their Mechanical Properties and Surface Appearance

P. Luna, J. Lizarazo-Marriaga, A. Mariño

Abstract. Natural fibers are becoming a valuable resource for composite industry. The main disadvantage of using them as reinforcement of polymeric matrices is their low compatibility with common matrices, resulting in a poor mechanical behavior. Plasma treatments applied to fibers could be used in order to increase the bonding between composite phases. This paper shows the results of a research aimed to study the effect of the dry etching plasma on natural fibers; for this, Guadua angustifolia bamboo fibers were used. The influence of etching time on the fiber´s tensile strength and the surface appearance was evaluated. Results showed that guadua fibers could be treated using dry etching plasma without a strength decreasing but with a significant modification on their surface appearance.

Keywords
Guadua Angustifolia Bamboo, Natural Fibers, Mechanical Properties, Dry Etching Plasma

Published online , 9 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: P. Luna, J. Lizarazo-Marriaga, A. Mariño, ‘Dry Etching Plasma Applied to Guadua Angustifolia Bamboo Fibers: Influence on their Mechanical Properties and Surface Appearance’, Materials Research Proceedings, Vol. 7, pp 332-340, 2018

DOI: https://dx.doi.org/10.21741/9781945291838-30

The article was published as article 30 of the book Non-Conventional Materials and Technologies

References
[1] Daniel I, Ishai O. Engineering mechanics of composite materials. Primera Ed. Oxford University Press; 1994.
[2] Valadez A. Efecto del tratamiento superficial de fibras de Henequén sobre la resistencia interfacial fibra-matriz y en las propiedades efectivas de materiales compuestos termoplásticos. Universidad Autónoma Metropolitana, México D.F; 1999.
[3] Hodgkinson JM. Mechanical testing of advanced fibre composites. Primera ed. TJ International; 2000.
[4] Agarwal B, Broutman L, Chandrashekhara K. Analysis and performance of fiber composites. Tercera Ed. John Wiley & Sons, Inc; 2006.
[5] Tapia C, Paredes C, Simbaña A, Bermúdez J. Aplicación de las Fibras Naturales en el Desarrollo de Materiales Compuestos y como Biomasa. Rev Tecnológica ESPOL. 2006;19:113–20.
[6] Taj S, Munawar M, Khan S. Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci. 2007;44(2):129–44.
[7] Spear M. Natural Composites in Construction. Welsh Composites Center; 2009. p. 1–9.
[8] Bledzki A, Reihmane S, Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci. 1996 Feb 22;59(8):1329–36. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8%3C1329::AID-APP17%3E3.0.CO;2-0
[9] Bledzki A, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24:221–74. https://doi.org/10.1016/S0079-6700(98)00018-5
[10] Rijswijk K, Brouwer WD, Beukers A. Application of Natural Fibre Composites in the Development of Rural Societies. 2001.
[11] Mohanty AK, Misra M, Drzal LT. Sustainable Bio-Composites from Renewable Resources : Opportunities and Challenges in the Green Materials World. J Polym Environ. 2002;10:19–26. https://doi.org/10.1023/A:1021013921916
[12] Faruk O, Bledzki AK, Fink H-P, Sain M. Progress Report on Natural Fiber Reinforced Composites. Macromol Mater Eng. 2013 Jun 19;n/a-n/a.
[13] Barkoula NM, Alcock B, Cabrera NO, Peijs T. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym Polym Compos. 2008;16(2):101–13. https://doi.org/10.1177/096739110801600203
[14] Kushwaha PK, Kumar R. Studies on performance of acrylonitrile-pretreated bamboo-reinforced thermosetting resin composites. J Reinf Plast Compos [Internet]. 2010 May 27 [cited 2013 Jul 17];29(9):1347–52. Available from: https://jrp.sagepub.com/cgi/doi/10.1177/0731684409103701
[15] Song W, Zhao F, Yu X, Wang C, Wei W, Zhang S. Interfacial characterization and optimal preparation of novel bamboo plastic composite engineering materials. BioResources. 2015;10:5049–70. https://doi.org/10.15376/biores.10.3.5049-5070
[16] Khan Z, Yousif BF, Islam MM. Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos Part B Eng [Internet]. 2017;116:186–99. Available from: https://doi.org/10.1016/j.compositesb.2017.02.015
[17] Kalia S, Kaith B, Kaur I. Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites — A Review. Polym Eng Sci. 2009; https://doi.org/10.1002/pen.21328
[18] Araújo JR, Waldman WR, De Paoli MA. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polym Degrad Stab. 2008 Oct;93(10):1770–5. https://doi.org/10.1016/j.polymdegradstab.2008.07.021
[19] Kwon H-J, Sunthornvarabhas J, Park J-W, Lee J-H, Kim H-J, Piyachomkwan K, et al. Tensile properties of Kenaf Fiber and Corn Husk FlourReinforced Poly(lactic acid) Hybrid Bio-Composites: Role of Aspect Ratio of Natural Fibers. Compos Part B Eng [Internet]. 2013 Aug [cited 2013 Aug 27]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836813004113
[20] Li R, Ye L, Mai Y. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos Part A Appl Sci Manuf [Internet]. 1997;28(1997):73–86. Available from: https://doi.org/10.1016/S1359-835X(96)00097-8
[21] Rodríguez L, Fangueiro R, Orrego C. Efecto de tratamientos químicos y de plasma DBD en las propiedades de fibras del seudotallo del plátano. Rev Latinoam Metal y Mater. 2015;35(2):1–10.
[22] Barra BN, Santos SF, Bergo PVA, Alves C, Ghavami K, Savastano H. Residual sisal fibers treated by methane cold plasma discharge for potential application in cement based material. Ind Crops Prod. 2015;77:691–702. https://doi.org/10.1016/j.indcrop.2015.07.052
[23] Luna P, Lizarazo-Marriaga J, Mariño A. Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: An exploratory study. Constr Build Mater [Internet]. 2016;116:93–7. Available from: https://dx.doi.org/10.1016/j.conbuildmat.2016.04.139
[24] Albella JM, editor. Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Madrid, España: Consejo Superior de Investigaciones Científicas; 2003.
[25] Costa THC, Feitor MC, Alves CJ, Freire PB, de Bezzera CM. Effects of gas composition during plasma modification of polyester fabrics. J Mater Process Technol. 2006;173:40–3.
[26] Sparavigna A. Plasma treatment advantages for textiles. Cornell Univ Libr. 2008;
[27] Morshed M, Alam M, Daniels S. Plasma Treatment of Natural Jute Fibre by RIE 80 plus Plasma Tool. Plasma Sci Technol. 2010;325. https://doi.org/10.1088/1009-0630/12/3/16
[28] Bogaerts A, Neyts E, Gijbels R, Van der Mullen J. Gas discharge plasmas and their applications. Spectrochim Acta – Part B At Spectrosc. 2002;57(4):609–58. https://doi.org/10.1016/S0584-8547(01)00406-2
[29] Morent R, De Geyter N, Desmet T, Dubruel P, Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Process Polym. 2011;8(3):171–90. https://doi.org/10.1002/ppap.201000153
[30] Denes FS, Manolache S. Macromolecular plasma-chemistry: An emerging field of polymer science. Prog Polym Sci. 2004;29(8):815–85. https://doi.org/10.1016/j.progpolymsci.2004.05.001
[31] Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta – Part B At Spectrosc. 2006;61(1):2–30. https://doi.org/10.1016/j.sab.2005.10.003
[32] Carlsson CMG, Stroem G. Reduction and Oxidation of Cellulose Surfaces by Means of Cold-Plasma. Langmuir [Internet]. 1991;7(11):2492–7. Available from: https://pubs.acs.org/doi/abs/10.1021/la00059a016
[33] Costa THC, Feitor MC, Alves Junior C, Bezerra CM. Caracterização de filmes de poliéster modificados por plasma de O2 a baixa pressão. Rev Matéria. 2008;13(1):65–76.
[34] de Oliveira M, Reis H, Pereira JC, de Brito CL, Rodrigues M, Alves C. O Uso Do Plasma De Nitrogênio Para Modificação Superficial Em Membranas De Quitosana. Rev Bras Inovação Tecnológica em Saúde. 2010;1–15.
[35] Flamm DL, Herb GK. Chapter 1: Plasma Etching Technology—An Overview. In: Plasma Etching [Internet]. Academic Press, Inc.; 1989. p. 1–89. Available from: https://doi.org/10.1016/B978-0-08-092446-5.50006-8
[36] Luna P, Lizarazo-Marriaga J. An extraction methodology of Guadua angustifolia bamboo fibers. In: 6th Amazon & Pacific Green Materials Congress and Sustainable Construction Materials LAT-RILEM Conference. 2016.
[37] Luna P, Lizarazo-Marriaga J, Mariño A. Preliminary study on the compatibilization techniques of natural fibers as reinforcement of polymeric matrices. In: Sustainable Construction Materials and Technologies (SCMT4). 2016.
[38] Kan CW, Chan K, Yuen CWM, Miao MH. Surface properties of low-temperature plasma treated wool fabrics. J Mater Process Technol [Internet]. 1998;83(1–3):180–4. Available from: https://doi.org/10.1016/S0924-0136(98)00060-0
[39] Yip J, Chan K, Sin KM, Lau KS. Low temperature plasma-treated nylon fabrics. J Mater Process Technol. 2002;123(1):5–12. https://doi.org/10.1016/S0924-0136(02)00024-9
[40] Sun D, Stylios GK. Fabric surface properties affected by low temperature plasma treatment. J Mater Process Technol. 2006;173(2):172–7. https://doi.org/10.1016/j.jmatprotec.2005.11.022
[41] Cheng SY, Yuen CWM, Kan CW, Cheuk KKL, Daoud WA, Lam PL, et al. Influence of atmospheric pressure plasma treatment on various fibrous materials: Performance properties and surface adhesion analysis. Vacuum [Internet]. 2010;84(12):1466–70. Available from: https://dx.doi.org/10.1016/j.vacuum.2010.01.012
[42] Amirou S, Zerizer A, Haddadou I, Merlin A. Effects of corona discharge treatment on the mechanical properties of biocomposites from polylactic acid and Algerian date palm fibres. Sci Res Essays. 2013;8(21):946–52.