Current Trends on Lanthanide Glasses and Materials, Chapter 6

$15.95

Relationship between the structural modifications and luminescence efficiencies of ZnF2-MO-TeO2 glasses doped with Ho3+ and Er3+ ions

C. Laxmikanth, J. Anjaiah

ZnF2-MO-TeO2 (where MO stands for ZnO, CdO and PbO) glasses doped with Ho2O3 and Er2O3 ions were prepared by melt quench method. The characterization of these glasses was done by characterized by XRD and IR spectra. The infrared spectral studies indicate relatively less disorder in ZTHo glass network in Ho3+ doped glasses and ZTE glass network in Er3+ doped glasses. The room temperature optical absorption and fluorescence spectra of these glasses have been studied and presented. The Judd-Ofelt parameters Ω2, Ω2 and Ω6 of these glasses have been evaluated from the measured intensities of various absorption bands and compared the same with those of other reported glass systems. The Judd-Ofelt theory was successfully applied in evaluating the various radiative parameters for different emission levels of these glasses and the same were reported. The highest values of the branching ratios are found to be for the emission transitions 5S2→5I8 in ZTHo glass and 4F5/2 4I15/2 in CTE, respectively, among holmium (where the transitions originating from 5G5, 5S2 and 5F3 levels) and erbium doped glasses (where the transitions originating from 2G9/2 and 4F5/2 levels).

Keywords
Optical Absorption, Fluorescence, Infrared Spectra, Holmium Ions, Erbium Ions, Tellurite Glasses

Published online 1/1/2017, 23 pages

DOI: https://dx.doi.org/10.21741/9781945291159-6

Part of Current Trends on Lanthanide Glasses and Materials

References
[1] E.F. Chillcce, I.O. Mazali, O.L. Alves, L.C. Barbosa, Opt. Mat. 33, (2011) 389-396. https://dx.doi.org/10.1016/j.optmat.2010.09.027
[2] H. Desirena, A. Schülzgen, S. Sabet, G. Ramos-Ortiz, E. de la Rosa, N. Peyghambarian, Opt. Mat. 31 (2009) 784-789. https://dx.doi.org/10.1016/j.optmat.2008.08.005
[3] Tomokatsu Hayakawa, Masahiko Hayakawa, Masayuki Nogami, Philippe Thomas, Opt. Mat. 32 (2010) 448-455. https://dx.doi.org/10.1016/j.optmat.2009.10.006
[4] G. El-Damrawi, S. Abd-El-Maksoud, Phys. Chem. Glasses 41 (2000) 6-9.
[5] D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain, J. Zavadil, J. Non-Cryst. Solids 284 (2001) 288-295. https://dx.doi.org/10.1016/S0022-3093(01)00425-2
[6] M. A. Sidkey, R.A. El-Mallawany, A.A. Abousehly, Y.B. Saddeek, Mat. Chem. Phys. 74 (2002) 222-229. https://dx.doi.org/10.1016/S0254-0584(01)00466-7
[7] Arshpreet Kaur, Atul Khanna, Carmen Pesquera, Fernando González, Vasant Sathe, J. Non-Cryst. Solids 356 (2010) 864-872. https://dx.doi.org/10.1016/j.jnoncrysol.2010.01.005
[8] B.V. R. Chowdari, P. Pramoda Kumari, J. Phys. Chem. Solids 58 (1997) 515-525. https://dx.doi.org/10.1016/S0022-3697(96)00160-6
[9] N. Narasimha Rao, I.V. Kityk, V. Ravi Kumar, P. Raghava Rao, B.V. Raghavaiah, P. Czaja, P. Rakus, N. Veeraiah, J. Non-Cryst. Solids 358 (2012) 702-710. https://dx.doi.org/10.1016/j.jnoncrysol.2011.11.019
[10] Y. Gandhi, I.V. Kityk, M.G. Brik, P. Raghava Rao, N. Veeraiah, J. Alloy. Compd. 508 (2010) 278-291. https://dx.doi.org/10.1016/j.jallcom.2010.08.137
[11] N. Narasimha Rao, I.V. Kityk, V. Ravi Kumar, P. Raghava Rao, B.V. Raghavaiah, P. Czaja, P. Rakus, N. Veeraiah, J. Non-Cryst. Solids 358 (2012) 702-710. https://dx.doi.org/10.1016/j.jnoncrysol.2011.11.019
[12] L. Pavić, N. Narasimha Rao, A. Moguš-Milanković, A. Šantić, V. Ravi Kumar, M. Piasecki, I.V. Kityk, N. Veeraiah, Cer. Inter. 40 (2014) 5989-5996. https://dx.doi.org/10.1016/j.ceramint.2013.11.047
[13] N. Narasimha Rao, I.V. Kityk, V. Ravi Kumar, Ch. Srinivasa Rao, M. Piasecki, P. Bragiel, N. Veeraiah, Cer. Inter. 38 (2012) 2551-2562. https://dx.doi.org/10.1016/j.ceramint.2011.11.026
[14] Y. Gandhi, N. Krishna Mohan, N. Veeraiah, J. Non-Cryst. Solids 357 (2011) 1193-1202. https://dx.doi.org/10.1016/j.jnoncrysol.2010.11.016
[15] M. M. Ahmed, C.A. Hogarth, M.N. Khan, J. Mater. Sci. 19 (1984) 4041-4044. https://dx.doi.org/10.1007/BF00980769
[16] J. D. Lee, Concise Inorganic Chemistry, Oxford: Blackwell Science, 1996.
[17] M. R. Reddy, S.B. Raju, N. Veeraiah, J. Phys. Chem. Solids 61 (2000) 1567-1571. https://dx.doi.org/10.1016/S0022-3697(00)00035-4
[18] B. B. Laud Lasers and Non-Linear optics New Age International (P) Ltd.,(1996)
[19] K. Bhargavi, M. Sundara Rao, V. Sudarsan, Ch. Srinivasa Rao, M. Piasecki, I.V. Kityk, M. Srinivasa Reddy, N. Veeraiah, Opt. Mat. , 36 (2014) 1189-1196. https://dx.doi.org/10.1016/j.optmat.2014.02.027
[20] Ch. Srinivasa Rao, K. Upendra Kumar, P. Babu, C.K. Jayasankar, Opt. Mat. 35 (2012) 102-107. https://dx.doi.org/10.1016/j.optmat.2012.07.023
[21] Sk. Mahamuda, K. Swapna, P. Packiyaraj, A. Srinivasa Rao, G. Vijaya Prakash, Opt. Mat. 36 (2013) 362-371. https://dx.doi.org/10.1016/j.optmat.2013.09.023
[22] T. Satyanarayana, T. Kalpana, V. Ravi Kumar, N. Veeraiah, J. Lumin. 130 (2010) 498-506. https://dx.doi.org/10.1016/j.jlumin.2009.10.021
[23] Z. Yao, Y. Ding, T. Nanba and Y.Miura, Phys. Chem. Glasses 40 (1999) 179.
[24] Shibin Jiang, Michael Myers, Nasser Peyghambarian, J. Non-Cryst. Solids 239 (1998) 143. https://dx.doi.org/10.1016/S0022-3093(98)00757-1
[25] J.A. Pardo, J.J. Pena, R.I. Merino, R. Cases, A. Larrea, V.M. Orera, J. Non-Cryst. Solids 298 (2002) 23. https://dx.doi.org/10.1016/S0022-3093(01)01043-2
[26] Hiroyuki Inoue, Kohei Soga, Akio Makishima, J.Non-Cryst. Solids 298 (2002)270. https://dx.doi.org/10.1016/S0022-3093(01)01052-3
[27] M. Rami Reddy, S. Bangaru Raju, N. Veeraiah, Ind. J. Pure and Appl. Phys 38 (2000) 589.
[28] Shibin Jiang, Tao Luo, Nasser Peyghambarian, J.Non-Cryst.Solids 263 & 264 (2000) 364. https://dx.doi.org/10.1016/S0022-3093(99)00646-8
[29] B.B. Laud, Lasers and Non-Linear optics New Age International (P) Ltd., (1996).
[30] E.P. Chicklis et all App. Phys. Lett , 19 (1971)119.
[31] A. Erbit and H.P. Jenssen, App.Optics 19 (1980) 1729. https://dx.doi.org/10.1364/AO.19.001729
[32] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4424. https://dx.doi.org/10.1063/1.1669893
[33] K. Hirao, S. Todoroki, N. Soga, J. Non-Cryst. Solids 175 (1994) 263-269. https://dx.doi.org/10.1016/0022-3093(94)90019-1
[34] D.K. Durga, P. Yadagiri Reddy, N. Veeraiah, J. Lumin 53 (2002) 99.
[35] G. Srinivasarao, N. Veeraiah, Eur. Phys. J. AP 16 (2001) 11-22. https://dx.doi.org/10.1051/epjap:2001188
[36] P. Subbalakshmi, N. Veeraiah, Ind. J. Eng. Mater. Sci 8 (2001) 275-284.
[37] N. Mochida, K. Takahashi, K. Nakata, Yogyo. Kyokai. Shi 86 (1978) 316-326. https://dx.doi.org/10.2109/jcersj1950.86.995_316
[38] G. A. Clare, C.A. Wright, N.R. Sinclair, F.L. Galeener, E.A. Geissberger, J. Non-Cryst. Solids 111 (1989) 123-138. https://dx.doi.org/10.1016/0022-3093(89)90274-3
[39] S. Neov, V. Kozhukharov, I. Gerasimova, K. Krezhov, B. Sidzhimov, J. Phys. C 2 (1979) 2475-2485. https://dx.doi.org/10.1088/0022-3719/12/13/012
[40] Berthereau, Y. LE Luyer, R. Olazcuaga, Mater. Res. Bul. 29 (1994) 933-941. https://dx.doi.org/10.1016/0025-5408(94)90053-1
[41] T. Sekiya, N. Mochida, A. Ohtsuka, J. Non-Cryst. Solids 144 (1992) 128-144. https://dx.doi.org/10.1016/S0022-3093(05)80393-X
[42] V. Kozhukharov, H. Burger, S. Neov, B. SIdzhimov, Polyhedron 5 (1986) 771-777. https://dx.doi.org/10.1016/S0277-5387(00)84436-8
[43] O. Lindqvist, Acta. Chem. Scand 22 (1968) 977-982. https://dx.doi.org/10.3891/acta.chem.scand.22-0977
[44] F. Folger, Z. Anorg. Allg. Chem. 411 (1971) 111-117. https://dx.doi.org/10.1002/zaac.19754110204
[45] B. R. Judd, Phys. Rev 127 (1962) 750-761. https://dx.doi.org/10.1103/PhysRev.127.750
[46] D. M. Gruen, C. W. Dekock, R. L. Mcbeth, Adv. Chem. Ser 71 (1967) 102-121. https://dx.doi.org/10.1021/ba-1967-0071.ch008
[47] R. Reisfeld, J. Hormadaly, J. Chem. Phys. 64 (1976) 3207-3212. https://dx.doi.org/10.1063/1.432659
[48] K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, Phys. Rev. B 30 (1984) 2429-2437. https://dx.doi.org/10.1103/PhysRevB.30.2429
[49] J. Hormadaly, R. Reisfeld, J. Non-Cryst. Solids 30 (1979) 337-348. https://dx.doi.org/10.1016/0022-3093(79)90171-6
[50] F. Fermi, G. Ingletto, C. Aschieri, M. Bettinelli, Inorgan. Chemica Acta 163 (1989) 123-125. https://dx.doi.org/10.1016/S0020-1693(00)83437-4
[51] J. R. Quagliano, F. S. Richardson, M. F. Reid, J. Alloy. Compd. 180 (1992) 131-139. https://dx.doi.org/10.1016/0925-8388(92)90372-G
[52] Meng Wang, Lixia Yi, Guonian Wang, Hu Lili, Junjie Zhang, Solid State Commun. 149 (2009) 1216–1220. https://dx.doi.org/10.1016/j.ssc.2009.04.021
[53] P. Subbalakshmi, N. Veeraiah, J. Phys. Chem. Solids 64 (2003) 1027. https://dx.doi.org/10.1016/S0022-3697(02)00370-0
[54] C.K. Jayasankar, V.V. Ravi Kanth Kumar, Pramana 48 (1997) 1151. https://dx.doi.org/10.1007/BF02845890
[55] H. Takebe, Y. Nageno, K. Morinaga, J. Am. Ceram. Soc 77 (1994) 2132. https://dx.doi.org/10.1111/j.1151-2916.1994.tb07108.x
[56] Y. Subramanyam, L.R. Moorthy, S.V.J. Lakshman, Mater. Lett 91 (1988) 46.
[57] J.A. Capobianco, P.P. Proulx, M. Bettinelti, F. Negrisolo, Phys. Rev. 42 (1990) 5936-5944. https://dx.doi.org/10.1103/PhysRevB.42.5936
[58] C. K. Jorgensen, R. Reisfeld, J. Less-Common. Met. 93 (1983) 107-112. https://dx.doi.org/10.1016/0022-5088(83)90454-X
[59] J. L. Adam, W. A. Sibley, J. Non-Cryst. Solids 76 (1985) 267-279. https://dx.doi.org/10.1016/0022-3093(85)90004-3
[60] S.V.J. Lakshman, Y.C. Ratnakaram, J. Non-Cryst. Solids 94 (1987) 222 . https://dx.doi.org/10.1016/S0022-3093(87)80292-2
[61] S.V.J. Lakshman, A. Suresh kumar, Phys. Chem. Glasses 29 (1988) 146.
[62] S.V.J. Lakshman, A. Suresh kumar, J. Phys. Chem. Solids 49 (1988) 133. https://dx.doi.org/10.1016/0022-3697(88)90042-X
[63] S.V.J. Lakshman, A. Suresh kumar, Lanthanide. Actinide. Res 2 (1988) 243.
[64] C. Laxmikanth, J. Anjaiah, P. Venkateswara Rao, B. Appa Rao, N. Veeraiah., Luminescence and spectroscopic properties of ZnF2–MO–TeO2 glasses doped with Ho3+ ions. Journal of Molecular Structure 1093 (2014)166-171. https://dx.doi.org/10.1016/j.molstruc.2015.03.018