Lanthanum doped borophosphate glasses for nuclear waste immobilization
Fu Wang, Qilong Liao
Recently, lanthanum-contained iron borophosphate glasses have received comprehensive attention for high-level radioactive wastes immobilization purpose because this system glass possesses both high elementary loading for chlorides, sulfates and heavy metals and good thermal properties. Moreover, the irradiation stability and chemical durability are comparable to those of iron phosphate base glasses and widely used borosilicate glass waste forms. This chapter summarizes recent progress on the suitability of lanthanum-contained iron borophosphate for nuclear waste immobilization from the aspect of structure, chemical durability, irradiation stability, thermal properties, etc.
Keywords
Iron Borophosphate Glasses; Lanthanum; Nuclear Waste Immobilization; Irradiation Stability; Thermal Properties; Structural Stability
Published online 1/1/2017, 20 pages
DOI: https://dx.doi.org/10.21741/9781945291159-3
Part of Current Trends on Lanthanide Glasses and Materials
References
[1] H. Darwish, Investigation of the durability of sodium calcium aluminum borosilicate glass containing different additives, Mater. Chem. Phys. 69 (2001) 36-44. https://dx.doi.org/10.1016/S0254-0584(00)00295-9
[2] C.W. Kim, C.S. Ray, D. Zhu, D.E. Day, D. Gombert, A. Aloy, A. Moguš-Milankovic, M. Karabulut, Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques, J. Nucl. Mater. 322 (2003) 152-164. https://dx.doi.org/10.1016/S0022-3115(03)00325-8
[3] H. Jena, B.K. Maji, R. Asuvathraman, K.V. Govindan Kutty, Effect of pyrochemical chloride waste loading on thermo-physical properties of borosilicate glass bonded Sr-chloroapatite composite, Mater. Chem. Phys. 162 (2015) 188-196. https://dx.doi.org/10.1016/j.matchemphys.2015.05.057
[4] M.G. Mesko, D.E. Day, Immobilization of spent nuclear fuel in iron phosphate glass, J. Nucl. Mater. 273 (1999) 27-36. https://dx.doi.org/10.1016/S0022-3115(99)00020-3
[5] S. Ibrahim, M.M. Morsi, Effect of increasing Fe2O3 content on the chemical durability and infrared spectra of (25−x)Na2O−xFe2O3–25PbO–50SiO2 glasses, Mater. Chem. Phys. 138 (2013) 628-632. https://dx.doi.org/10.1016/j.matchemphys.2012.12.030
[6] D.E. Day, Z. Wu, C.S. Ray, et al, Chemically durable iron phosphate glass wasteforms, J. Non-Cryst. Solids 241 (1998) 1-12. https://dx.doi.org/10.1016/S0022-3093(98)00759-5
[7] K. Cheol-Woon, D.E. Day, Immobilization of Hanford LAW in iron phosphate glasses, J. Non-Cryst. Solids 331 (2003) 20-31. https://dx.doi.org/10.1016/j.jnoncrysol.2003.08.070
[8] K. Joseph, R. Asuvathraman, R.V. Krishnan, et al, Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass, J. Nucl. Mater. 452 (2014) 273-280. https://dx.doi.org/10.1016/j.jnucmat.2014.05.038
[9] P.Y. Shih, Properties and FTIR spectra of lead phosphate glasses for nuclear waste immobilization, Mater. Chem. Phys. 80 (2003) 299-304. https://dx.doi.org/10.1016/S0254-0584(02)00516-3
[10] P.A. Bingham, R.J. Hand, S.D. Forder, Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability, Mater. Res. Bull. 41 (2006) 1622-1630. https://dx.doi.org/10.1016/j.materresbull.2006.02.029
[11] F.H. ElBatal, Y.M. Hamdy, S.Y. Marzouk, Gamma ray interactions with V2O5-doped sodium phosphate glasses, Mater. Chem. Phys. 112 (2008) 991-100. https://dx.doi.org/10.1016/j.matchemphys.2008.07.005
[12] P.A. Bingham, R.J. Hand, S.D. Forder, A. Lavaysierre, F. Deloffre, S.H. Kilcoyne, I. Yasin, Structure and properties of iron borophosphate glasses, Phys. Chem. Glasses-B 47 (2006) 313-317.
[13] M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, G.M. Mammadov, Effect of boron addition on the structure and properties of iron phosphate glasses, J. Non-Cryst. Solids 357 (2011) 1455-1462. https://dx.doi.org/10.1016/j.jnoncrysol.2010.11.023
[14] P.A. Bingham, G. Yang, R.J. Hand, G. Möbus, Boron environments and irradiation stability of iron borophosphate glasses analysed by EELS, Solid State Sciences 10 (2008) 1194-1199. https://dx.doi.org/10.1016/j.solidstatesciences.2007.11.024
[15] M. Karabulut, C. Aydın, H. Ertap, M. Yüksek, Structure and properties of hafnium iron borophosphate glass-ceramics, J. Non-Cryst. Solids 411 (2015) 19-25. https://dx.doi.org/10.1016/j.jnoncrysol.2014.12.014
[16] F. Wang, Q.L. Liao, G.H. Xiang, S.Q. Pan, Thermal properties and FTIR spectra of K2O/Na2O iron borophosphate glasses, J. Mol. Struct. 1060 (2014) 176-181. https://dx.doi.org/10.1016/j.molstruc.2013.12.049
[17] F. Wang, Q.L. Liao, K.R. Chen, S.Q. Pan, M.W. Lu, Glass formation and FTIR spectra of CeO2-doped 36Fe2O3-10B2O3-54P2O5 glasses, J. Non-Cryst. Solids 409 (2015) 76-82. https://dx.doi.org/10.1016/j.jnoncrysol.2014.11.020
[18] F. Wang, Q.L. Liao, K.R. Chen, S.Q. Pan, M.W. Lu, The crystallization and FTIR spectra of ZrO2-doped 36Fe2O3–10B2O3–54P2O5 glasses and crystalline compounds, J. Alloys Compd. 611 (2014) 278-283. https://dx.doi.org/10.1016/j.jallcom.2014.05.117
[19] Q.L. Liao, F. Wang, K.R. Chen, S.Q. Pan, et al. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes, J. Mol. Struct. 1092 (2015) 187-191. https://dx.doi.org/10.1016/j.molstruc.2015.03.034
[20] F. Wang, Q.L. Liao, Y.Y. Dai, H.Z. Zhu. Properties and vibrational spectra of iron borophosphate glasses/glass-ceramics containing lanthanum, Materials Chemistry and Physics, 2015, 166(C): 215-222. https://dx.doi.org/10.1016/j.matchemphys.2015.10.005
[21] M. Karabulut, E. Metwalli, R.K. Brow, Structure and properties of lanthanum–aluminum–phosphate glasses, J. Non-Cryst. Solids 283 (2001) 211-219. https://dx.doi.org/10.1016/S0022-3093(01)00420-3
[22] B. Qian, S. Yang, X. Liang, Y. Lai, L. Gao, G. Yin, Structural and thermal properties of La2O3-Fe2O3-P2O5 glasses, J. Mol. Struct. 1011 (2012) 153-157. https://dx.doi.org/10.1016/j.molstruc.2011.12.014
[23] D.A. Magdas, O. Cozar, V. Chis, I. Ardelean, The structural dual role of Fe2O3 in some lead-phosphate glasses, Vib. Spectrosc. 48 (2008) 251-254. https://dx.doi.org/10.1016/j.vibspec.2008.02.016
[24] P.Pascuta, G. Borodi, A. Popa, V. Dan, E. Culea, Influence of iron ions on the structural and magnetic properties of some zinc-phosphate glasses, Mater. Chem. Phys. 123 (2010) 767–771. https://dx.doi.org/10.1016/j.matchemphys.2010.05.056
[25] Y. Lai, X. Liang, G. Yin, S. Yang, J. Wang, H. Zhu, H. Yu, Infrared spectra of iron phosphate glasses with gadolinium oxide, J. Mol. Struct. 1004 (2011) 188-192. https://dx.doi.org/10.1016/j.molstruc.2011.08.003
[26] H.A. ElBatal, A.M. Abdelghany, I.S. Ali, Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma irradiation, J. Non-Cryst. Solids 358 (2012) 820-825. https://dx.doi.org/10.1016/j.jnoncrysol.2011.12.069
[27] M. Karabulut, M. Yüksek, G.K. Marasinghe, D.E. Day, Structural features of hafnium iron phosphate glasses, J. Non-Cryst. Solids 355 (2009) 1571-1573. https://dx.doi.org/10.1016/j.jnoncrysol.2009.06.005
[28] L. Baia, D. Muresan, M. Baia, J. Popp, S. Simon, Structural properties of silver nanoclusters–phosphate glass composites, Vib. Spectrosc. 43 (2007) 313-318. https://dx.doi.org/10.1016/j.vibspec.2006.03.006
[29] A. Majjane, A.Chahine, M.Et-tabirou, B. Echchahed, T. Do, P.M. Breen, X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses, Mater. Chem. Phys.143 (2014) 779-787. https://dx.doi.org/10.1016/j.matchemphys.2013.10.013
[30] L. Macalika, P.E. Tomaszewski, A. Matraszek, I. Szczygieł, P. Solarz, P. Godlewska, M. Sobczyk, J. Hanuza, Optical and structural characterisation of pure and Pr3+ doped LaPO4 and CePO4 nanocrystals, J. Alloys Compd. 509 (2011) 7458- 7465. https://dx.doi.org/10.1016/j.jallcom.2011.04.077
[31] A. Moguš-Milankovic, A. Šantic, S.T. Reis, K. Furic, D.E. Day, Mixed ion–polaron transport in Na2O–PbO–Fe2O3–P2O5 glasses, J. Non-Cryst. Solids 342 (2004) 97-109. https://dx.doi.org/10.1016/j.jnoncrysol.2004.07.012
[32] P.A. Bingham, R.J. Hand, O.M. Hannant, S.D. Forder, S.H. Kilcoyne, Effects of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses, J. Non-Cryst. Solids 355 (2009) 1526-1538. https://dx.doi.org/10.1016/j.jnoncrysol.2009.03.008
[33] G.K. Marasinghe, M. Karabulut, C.S. Ray, et al, Effects of nuclear waste components on redox equilibria, structural features, and crystallization characteristics of iron phosphate glasses, Ceram. Trans. 93 (2003) 195-201.
[34] G.S. Henderson, R.T. Amos, The structure of alkali germanophosphate glasses by Raman spectroscopy, J. Non-Cryst. Solids 328 (2003) 1-19. https://dx.doi.org/10.1016/S0022-3093(03)00478-2
[35] B. Qian, X. Liang, S. Yang, S. He, L. Gao, Effects of lanthanum addition on the structure and properties of iron phosphate glasses, J. Mol. Struct. 1027 (2012) 31-35. https://dx.doi.org/10.1016/j.molstruc.2012.05.078
[36] L. Zhang, R.K. Brow, A Raman Study of Iron–Phosphate Crystalline Compounds and Glasses, J. Am. Ceram. Soc. 94 (2011) 3123-3130. https://dx.doi.org/10.1111/j.1551-2916.2011.04486.x
[37] P. Mošner, M. Vorokht, L. Koudelka, L. Montagne, B. Revel, K. Sklepić, A. Moguš-Milanković, Effect of germanium oxide on the structure and properties of lithium borophosphate glasses, J. Non-Cryst. Solids 375 (2013) 1-6. https://dx.doi.org/10.1016/j.jnoncrysol.2013.05.009
[38] L. Koudelka, P. Mošner, M. Zeyer, C. Jäger, Structural study of PbO-B2O3-P2O5 glasses by NMR, Raman and infrared spectroscopy, Phys. Chem. Glasses 43 (2002) 102-107.
[39] J.W. Lim, M.L. Schmitt, R.K. Brow, S.W. Yung, Properties and structures of tin borophosphate glasses, J. Non-Cryst. Solids 356 (2010) 1379-1384. https://dx.doi.org/10.1016/j.jnoncrysol.2010.02.019
[40] M.W. Lu, F. Wang, K.R. Chen, Y.Y. Dai, Q. Liao, H.Z. Zhu, The crystallization and structure features of barium-iron phosphate glasses, Spectrochim. Acta Part A 148 (2015) 1–6. https://dx.doi.org/10.1016/j.saa.2015.03.121
[41] R.K. Brow, D.R. Tallant, W.L. Warren, A. McIntyre, D.E. Day, Spectroscopic studies of the structure of titanophosphate and calcium titanophosphate glasses, Phys. Chem. Glasses 38 (1997) 300-307.
[42] A. Mogus-Milankovic, K. Furic, D.E. Day, Scientific basis for nuclear waste management, Mat. Res. Soc. Symp. Proc. 663 (2001) 153-155. https://dx.doi.org/10.1557/PROC-663-153
[43] Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, B.T. Zhang, Raman spectra study of iron phosphate glasses with sodium sulfate, J. Mol. Struct. 1013 (2012) 134-137. https://dx.doi.org/10.1016/j.molstruc.2012.01.025
[44] S.T. Reis, M. Karabulut, D.E. Day, Crystal chemistry of the monazite structure, J. Non-Cryst. Solids 292 (2001) 150-157. https://dx.doi.org/10.1016/S0022-3093(01)00880-8
[45] N. Clavier, R. Podor, N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc. 31 (2011) 941–976. https://dx.doi.org/10.1016/j.jeurceramsoc.2010.12.019