Preliminary synthesis of the TiO2 photocatalyst for hydrogen production
NUR AIN ATIQAH Mohd Amin, HAYYIRATUL FATIMAH Mohd Zaid
Abstract. The preliminary analysis of the proposed work, specifically the development of the titanium dioxide (TiO2) photocatalyst, was described in this chapter. The results of the analysis are useful for comparing the composite structures of TiO2 photocatalysts with different calcination temperatures. Various crystalline and amorphous structures of TiO2, such as anatase, rutile, and brookite, have garnered significant attention for their diverse applications. This study investigates the synthesis, characterization, and performance evaluation of TiO2 photocatalysts for hydrogen production applications. TiO2, known for its stability, non-toxicity, and low cost, has garnered significant interest due to its unique properties. Utilizing various experimental methods including sol-gel hydrothermal synthesis and calcination at different temperatures, the researchers synthesized anatase and rutile TiO2 photocatalysts. Characterization techniques such as thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), surface area analysis, electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to analyze the structural and performance properties of the photocatalysts. Results revealed that calcination temperature significantly influenced the crystallinity, particle size, surface area, and pore structure of TiO2, with an optimal temperature of 500°C yielding superior photocatalytic activity. Electrochemical analysis indicated smoother photocharge carrier transfer kinetics and enhanced photo electrocatalytic activity for TiO2 calcined at 500°C, highlighting its potential for efficient hydrogen production. This comprehensive investigation contributes valuable insights into the development of sustainable TiO2 photocatalysts for clean energy applications.
Keywords
Photoelectrochemical Cell, Titanium Dioxide, Calcination Temperature, Photocatalytic Activity
Published online 4/25/2025, 12 pages
Copyright © 2025 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: NUR AIN ATIQAH Mohd Amin, HAYYIRATUL FATIMAH Mohd Zaid, Preliminary synthesis of the TiO2 photocatalyst for hydrogen production, Materials Research Proceedings, Vol. 53, pp 584-595, 2025
DOI: https://doi.org/10.21741/9781644903575-59
The article was published as article 59 of the book Decarbonization Technology
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] Ebrahimi, M., Zakery, A., Karimipour, M., & Molaei, M. (2016). Nonlinear optical properties and optical limiting measurements of graphene oxide-Ag@TiO2 compounds. Optical materials, 57, 146-152. https://doi.org/10.1016/j.optmat.2016.04.039
[2] Le, L., Xu, J., Zhou, Z., Wang, H., Xiong, R., & Shi, J. (2018). Effect of oxygen vacancies and Ag deposition on the magnetic properties of Ag/N co-doped TiO2 single-crystal films. Materials Research Bulletin, 102, 337-341. https://doi.org/10.1016/j.materresbull.2018.01.045
[3] Wang, T., Wei, J., Shi, H., Zhou, M., Zhang, Y., Chen, Q., & Zhang, Z. (2017). Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E: Low-dimensional Systems and Nanostructures, 86, 103-110. https://doi.org/10.1016/j.physe.2016.10.016
[4] Ye, M. M., Chen, Z. L., Wang, W. S., Zhen, L., & Shen, J. M. (2008). Template-free hydrothermal preparation of mesoporous TiO2 microspheres on a large scale. Chemistry letters, 37(9), 938-939. https://doi.org/10.1246/cl.2008.938
[5] Zhang, Q., Ge, J., Goebl, J., Hu, Y., Lu, Z., & Yin, Y. (2009). Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Research, 2, 583-591. https://doi.org/10.1007/s12274-009-9060-5
[6] Yu, M., Liang, H., Zhan, R., Xu, L., & Niu, J. (2021). Sm-doped g-C3N4/Ti3C2 MXene heterojunction for visible-light photocatalytic degradation of ciprofloxacin. Chinese Chemical Letters, 32(7), 2155-2158. https://doi.org/10.1016/j.cclet.2020.11.069
[7] Liu, W., Sun, M., Ding, Z., Gao, B., & Ding, W. (2021). Ti3C2 MXene embellished g- C3N4 nanosheets for improving photocatalytic redox capacity. Journal of Alloys and Compounds, 877, 160223. https://doi.org/10.1016/j.jallcom.2021.160223
[8] Zhou, Y., Yu, M., Zhan, R., Wang, X., Peng, G., & Niu, J. (2021). Ti3C2 MXene-induced interface electron separation in g-C3N4/Ti3C2 MXene/MoSe2 Z-scheme heterojunction for enhancing visible light-irradiated enoxacin degradation. Separation and Purification Technology, 275, 119194. https://doi.org/10.1016/j.seppur.2021.119194
[9] Fujishima, A. K. I. R. A., Rao, T. N., & Tryk, D. A. (2000). TiO2 photocatalysts and diamond electrodes. Electrochimica acta, 45(28), 4683-4690. https://doi.org/10.1016/S0013-4686(00)00620-4
[10] Zhao, J., Bowman, L., Zhang, X., Vallyathan, V., Young, S. H., Castranova, V., & Ding, M. (2009). Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. Journal of toxicology and environmental health, part A, 72(19), 1141-1149. https://doi.org/10.1080/15287390903091764
[11] Liu, X., Zhou, K., Wang, L., Wang, B., & Li, Y. (2009). Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. Journal of the American Chemical Society, 131(9), 3140-3141. https://doi.org/10.1021/ja808433d
[12] Fuziki, M. E. K., Brackmann, R., Dias, D. T., Tusset, A. M., Specchia, S., & Lenzi, G. G. (2021). Effects of synthesis parameters on the properties and photocatalytic activity of the magnetic catalyst TiO2/CoFe2O4 applied to selenium photoreduction. Journal of Water Process Engineering, 42, 102163. https://doi.org/10.1016/j.jwpe.2021.102163
[13] Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., & Nadhman, A. (2018). Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange. Materials Chemistry and Physics, 213, 259-266. https://doi.org/10.1016/j.matchemphys.2018.04.015
[14] Peng, T., Zhao, D., Dai, K., Shi, W., & Hirao, K. (2005). Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. The journal of physical chemistry B, 109(11), 4947-4952. https://doi.org/10.1021/jp044771r
[15] Li, J., Zhu, L., Wu, Y., Harima, Y., Zhang, A., & Tang, H. (2006). Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer, 47(21), 7361-7367. https://doi.org/10.1016/j.polymer.2006.08.059
[16] Funda, A. K., Birlik, I., Keskin, Ö. Y., & Delice, T. K. Improvement of Photocatalytic Degradation of Titanium Dioxide Nanomaterials by Non-metal Doping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 874-882. https://doi.org/10.35414/akufemubid.1256778
[17] Watthanaarun, J., Pavarajarn, V., & Supaphol, P. (2005). Titanium (IV) oxide nanofibers by combined sol-gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant. Science and Technology of Advanced Materials, 6(3-4), 240-245. https://doi.org/10.1016/j.stam.2005.02.002
[18] Castro-López, C. A., Centeno, A., & Giraldo, S. A. (2010). Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants. Catalysis Today, 157(1-4), 119-124. https://doi.org/10.1016/j.cattod.2010.04.050
[19] Usman, A., Aris, A., Labaran, B., Darwish, M., & Jagaba, A. (2022). Effect of calcination temperature on the morphology, crystallinity, and photocatalytic activity of ZnO/TiO2 in selenite photoreduction from aqueous phase. J. New Mater. Electrochem. Syst, 25(4), 251- 258. https://doi.org/10.14447/jnmes.v25i4.a05
[20] Ullah, H., Tahir, A. A., Bibi, S., Mallick, T. K., & Karazhanov, S. Z. (2018). Electronic properties of β-TaON and its surfaces for solar water splitting. Applied Catalysis B: Environmental, 229, 24-31. https://doi.org/10.1016/j.apcatb.2018.02.001
[21] Mou, H., Song, C., Zhou, Y., Zhang, B., & Wang, D. (2018). Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Applied Catalysis B: Environmental, 221, 565-573. https://doi.org/10.1016/j.apcatb.2017.09.061
[22] Manik photocatalytic dye degradation and hydrogen evolution performance of Cu encapsulated BiVO4 under visible light irradiation. Chemical Physics Impact, 6, 100178. https://doi.org/10.1016/j.chphi.2023.100178
[23] Safaei, J., Ullah, H., Mohamed, N. A., Noh, M. F. M., Soh, M. F., Tahir, A. A., … & Teridi, M. A. M. (2018). Enhanced photoelectrochemical performance of Z-scheme g- C3N4/BiVO4 photocatalyst. Applied Catalysis B: Environmental, 234, 296-310. https://doi.org/10.1016/j.apcatb.2018.04.056
[24] Liu, C., Yang, Y., Li, J., Chen, S., Li, W., & Tang, X. (2017). An in-situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity. Chemical Engineering Journal, 326, 603-611. https://doi.org/10.1016/j.cej.2017.05.179