Rare Earth Metals Doped ZnO Nanomaterials: Synthesis, Photocatalytic, and Magnetic Properties
D. Ranjith Kumar, Yuvaraj Haldorai, R.T. Rajendra Kumar
Zinc oxide (ZnO) nanomaterials have attracted increasing interest due to their unique properties. As part of this renewed interest in ZnO nanomaterials, researchers began seeking new strategies to engineer materials by doping rare earth metals on ZnO. This chapter provides a general overview of the techniques and strategies used for the synthesis of undoped and rare earth metals (Samarium, Gadolinium, Europium, Cerium, Neodymium, and Dysprosium) doped ZnO nanomaterials. In addition, optical, magnetic, and photocatalytic properties of these materials were discussed. Some key results are summarized relating to the above properties.
Keywords
Rare Earth Metals, ZnO, Doping, Photocatalytic Activity, Magnetic Properties
Published online 6/5/2024, 19 pages
Citation: D. Ranjith Kumar, Yuvaraj Haldorai, R.T. Rajendra Kumar, Rare Earth Metals Doped ZnO Nanomaterials: Synthesis, Photocatalytic, and Magnetic Properties, Materials Research Foundations, Vol. 164, pp 279-297, 2024
DOI: https://doi.org/10.21741/9781644903056-8
Part of the book on Rare Earth
References
[1] Recent advances in ZnO materials and devices, D.C. Look, Materials Science and Engineering B80 (2001) 383-387. https://doi.org/10.1016/S0921-5107(00)00604-8
[2] Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett., Vol. 84, No. 18, 3 May 2004. https://doi.org/10.1063/1.1738932
[3] A comprehensive review of ZnO materials and devices, Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, Journal of Applied Physics 98, 041301 (2005). https://doi.org/10.1063/1.1992666
[4] Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO, H. S. Hsu, J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, and C. P. Liu, Appl. Phys. Lett. 88, 242507 (2006). https://doi.org/10.1063/1.2212277
[5] Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: Microwave-assisted synthesis, Mukta V. Limaye, Shashi B. Singh, Raja Das, Pankaj Poddar, Sulabha K. Kulkarni, Journal of Solid State Chemistry 184 (2011) 391-400. https://doi.org/10.1016/j.jssc.2010.11.008
[6] Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method, K. Raja, P.S. Ramesh b, D. Geetha, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 19-24. https://doi.org/10.1016/j.saa.2013.09.103
[7] Electric-Field Control of Ferromagnetism in Mn-Doped ZnO Nanowires, Li-Te Chang, Chiu-Yen Wang, Jianshi Tang, Tianxiao Nie, Wanjun Jiang, Chia-Pu Chu, Shamsul Arafin, Liang He, Manekkathodi Afsal, Lih-Juann Chen, and Kang L. Wang, Nano Lett. 2014, 14, 1823−1829. https://doi.org/10.1021/nl404464q
[8] Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method, Sini Kuriakose, Biswarup Satpati and Satyabrata Mohapatra, Phys. Chem. Chem. Phys., 2014, 16, 12741. https://doi.org/10.1039/c4cp01315h
[9] Cr-Doped ZnO Nanoparticles: Synthesis, Characterization, Adsorption Property, and Recyclability, Alan Meng, Jing Xing, Zhenjiang Li, and Qingdang Li, ACS Appl. Mater. Interfaces 2015, 7, 27449−27457. https://doi.org/10.1021/acsami.5b09366
[10] Rare Earth Doped Zinc Oxide Nanophosphor Powder: A Future Material for Solid State Lighting and Solar Cells, Vinod Kumar, O. M. Ntwaeaborwa, T. Soga, Viresh Dutta, and H. C. Swart, ACS Photonics 2017, 4, 2613-2637. https://doi.org/10.1021/acsphotonics.7b00777
[11] Optical and structural properties of Eu-diffused and doped ZnO nanowires, C.J. Pan, C.W. Chen, J.Y. Chen, P.J. Huang, G.C. Chi, C.Y. Chang, F. Ren, S.J. Pearton, Applied Surface Science 256 (2009) 187-190. https://doi.org/10.1016/j.apsusc.2009.07.108
[12] Photoluminescent properties of Sm3+-doped zinc oxide nanostructures, S.K. Lathika Devi n, K. Sudarsanakumar, Journal of Luminescence 130 (2010) 1221-1224. https://doi.org/10.1016/j.jlumin.2010.02.028
[13] Room temperature enhanced red emission from novel Eu3+ doped ZnO nanocrystals uniformly dispersed in nanofibers, Yongzhe Zhang, Yanxia Liu, Xiaodong Li, Qi JieWang and Erqing Xie, Nanotechnology 22 (2011) 415702. https://doi.org/10.1088/0957-4484/22/41/415702
[14] Robust Room-Temperature Ferromagnetism with Giant Anisotropy in Nd-Doped ZnO Nanowire Arrays, Dandan Wang, Qian Chen, Guozhong Xing, Jiabao Yi, Saidur Rahman Bakaul, Jun Ding,
a. Jinlan Wang, and Tom Wu, Nano Lett. 2012, 12, 3994−4000. https://doi.org/10.1021/nl301226k
[15] Enhanced acetone gas-sensing performance of La2O3-doped flowerlike ZnO
a. structure composed of nanorods, Jian-Qun He, Jing Yin, Dong Liu, Le-Xi Zhang, Feng-Shi Cai, Li-Jian Bie, Sensors and Actuators B 182 (2013) 170- 175. https://doi.org/10.1016/j.snb.2013.02.085
[16] Strong correlation between oxygen vacancy and ferromagnetism in Yb-doped ZnO thin films, Fei Li, Xue-Chao Liu, Ren-Wei Zhou, Hong-Ming Chen, Shi-Yi Zhuo, and Er-Wei Shi, J. Appl. Phys. 116, 243910 (2014). https://doi.org/10.1063/1.4905240
[17] Preparation of porous 3D Ce-doped ZnO microflowers with enhanced photocatalytic performance, Yimai Liang, Na Guo, Linlin Li, Ruiqing Li, Guijuan Jia and Shucai Gan, RSC Adv., 2015,5, 59887-59894. https://doi.org/10.1039/C5RA08519E
[18] Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid β Detection, Jing-Xi Wang, Ying Zhuo, Ying Zhou, Hai-Jun Wang, Ruo Yuan and Ya-Qin Chai, ACS Appl. Mater. Interfaces 2016, 8, 12968−12975. https://doi.org/10.1021/acsami.6b00021
[19] The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route, Jihui Lang, Qi Zhang, Qiang Han, Yue Fang, JiayingWang, Xiuyan Li, Yanqing Liu, Dandan Wang, Jinghai Yang, Materials Chemistry and Physics 194 (2017) 29e36. https://doi.org/10.1016/j.matchemphys.2017.03.010
[20] ZnO nanorods: synthesis, characterization and applications, Gyu-Chul Yi, Chunrui Wang and Won Il Park, Semicond. Sci. Technol. 20 (2005) S22-S34. https://doi.org/10.1088/0268-1242/20/4/003
[21] Synthesis and characterization of ZnO nanorods with a narrow size distribution, Chandrakanth Reddy Chandraiahgari, Giovanni De Bellis, Paolo Ballirano, Santosh Kiran Balijepalli, Saulius Kaciulis, Luisa Caneve, Francesca Sarto and Maria Sabrina Sarto, RSC Adv., 2015,5, 49861-49870. https://doi.org/10.1039/C5RA02631H
[22] Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol, Jamal Al-Sabahi, Tanujjal Bora, Mohammed Al-Abri and Joydeep Dutta, Materials 2016, 9, 238. https://doi.org/10.3390/ma9040238
[23] Influence of Defects on the Photocatalytic Activity of ZnO, Daimei Chen, Zhihong Wang, Tiezhen Ren, Hao Ding, Wenqing Yao, Ruilong Zong, and Yongfa Zhu, | J. Phys. Chem. C 2014, 118, 15300−15307. https://doi.org/10.1021/jp5033349
[24] Structural, optical, photocurrent and solar driven photocatalytic properties of vertically aligned samarium doped ZnO nanorod arrays, D. Ranjith Kumar, K.S. Ranjith, R.T. Rajendra Kumar, Optik 154 (2018) 115-125. https://doi.org/10.1016/j.ijleo.2017.10.004
[25] Effect of annealing temperature on the energy transfer in Eu-doped ZnO nanoparticles by chemical precipitation method, Jihui Lang, Qiang Han, Xue Li, Songsong Xu, Jinghai Yang, Lili Yang, Yongsheng Yan, Xiuyan Li, Yingrui Sui, Xiaoyan Liu, Jian Cao, Jian Wang, J Mater Sci: Mater Electron (2013) 24:4542-4548. https://doi.org/10.1007/s10854-013-1439-0
[26] Influence of Rare Earth (Nd and Tb) Co-Doping on ZnO Thin Films Properties, Amina El Fakir, Mouaad Sekkati, Guy Schmerber, Azzam Belayachi, Zineb Edfouf, Mohammed Regragui, Fouzia Cherkaoui El Moursli, Zouheir Sekkat, Aziz Dinia, Abdelilah Slaoui, and Mohammed Abd-Lefdil, Phys. Status Solidi C 2017, 14, 1700169.
[27] Hydrothermal fabrication of natural sun light active Dy2WO6 doped ZnO and its enhanced photoelectrocatalytic activity and self-cleaning properties, Kuppulingam Thirumalai, Manohar Shanthi and Meenakshisundaram Swaminathan, RSC Adv., 2017, 7, 7509. https://doi.org/10.1039/C6RA24843H
[28] Defect-band mediated ferromagnetism in Gd-doped ZnO thin films, S. Venkatesh, J. B. Franklin, M. P. Ryan, J.-S. Lee, Hendrik Ohldag, M. A. McLachlan, N. M. Alford, and I. S. Roqan, Journal of Applied Physics 117, 013913 (2015). https://doi.org/10.1063/1.4905585
[29] Effect of electron beam rapid thermal annealing on crystallographic, structural and magnetic properties of Zn1-xSmxO thin films, Anuraj Sundararaj, Gopalakrishnan Chandrasekaran, Helen Annal Therese, Arumugam Sonachalam, Karthigeyan Annamalai, Journal of Magnetism and Magnetic Materials 378 (2015) 112-117. https://doi.org/10.1016/j.jmmm.2014.10.169
[30] Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures, X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, Sensors and Actuators B 213 (2015) 222-233. https://doi.org/10.1016/j.snb.2015.02.073
[31] Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles, C. Jayachandraiah, K. Siva Kumar, G. Krishnaiah, N. Madhusudhana Rao, Journal of Alloys and Compounds 623 (2015) 248-254. https://doi.org/10.1016/j.jallcom.2014.10.067
[32] Preparation of porous 3D Ce-doped ZnO microflowers with enhanced photocatalytic performance, Yimai Liang, Na Guo, Linlin Li, Ruiqing Li, Guijuan Ji and Shucai Gan, RSC Adv., 2015,5, 59887-59894. https://doi.org/10.1039/C5RA08519E
[33] Effect of Eu3+ on the structure, morphology and optical properties of flower-like ZnO synthesized using chemical bath deposition, L.F. Koao, F.B. Dejene, R.E. Kroon, H.C. Swart, Journal of Luminescence 147 (2014) 85-89. https://doi.org/10.1016/j.jlumin.2013.10.045
[34] Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox, P.V. Korake, R.S. Dhabbe, A.N. Kadam, Y.B. Gaikwad, K.M. Garadkar, Journal of Photochemistry and Photobiology B: Biology 130 (2014) 11-19. https://doi.org/10.1016/j.jphotobiol.2013.10.012
[35] Microstructural and photoluminescence properties of sol-gel derived Tb3+ doped ZnO nanocrystals, Guy L. Kabongo, Gugu H. Mhlongo, Thomas Malwela, Bakang M. Mothudi, Kenneth T. Hillie, Mokhotjwa S. Dhlamini, Journal of Alloys and Compounds 591 (2014) 156-163. https://doi.org/10.1016/j.jallcom.2013.12.075
[36] Effect of samarium doping on structural, optical and magnetic properties of vertically aligned ZnO nanorod arrays, D. Ranjith Kumar, K.S. Ranjith, L.R. Nivedita, R.T. Rajendra Kumar, Journal of Rare Earths, Vol. 35, No. 10, Oct. 2017, P. 1002. https://doi.org/10.1016/S1002-0721(17)61005-6
[37] Understanding the origin of Ferromagnetism in Er doped ZnO System, Parmod Kumar, Vikas Sharma, Ankita Sarwa, Ashish Kumar, Surbhi, Rajan Goyal, K. Sachdev, S. Annapoorni, K. Asokan and D. Kanjila, RSC Adv., 2016,6, 89242-89249. https://doi.org/10.1039/C6RA17761A
[38] Temperature dependent selective and sensitive terbium doped ZnO nanostructures, Anita Hastir, Nipin Kohli, Ravi Chand Singh, Sensors and Actuators B 231 (2016) 110-119. https://doi.org/10.1016/j.snb.2016.03.001
[39] Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants, Hamed Eskandarloo, Alireza Badiei, Mohammad A. Behnajady, Ghodsi Mohammadi Ziarani, Ultrasonics Sonochemistry 28 (2016) 169-177. https://doi.org/10.1016/j.ultsonch.2015.07.012
[40] Water- and Humidity-Enhanced UV Detector by Using p Type La Doped ZnO Nanowires on Flexible Polyimide Substrate, Cheng-Liang Hsu, Hsieh-Heng Li and Ting-Jen Hsueh, ACS Appl. Mater. Interfaces 2013, 5, 11142−11151. https://doi.org/10.1021/am403364r
[41] Defects-Mediated Energy Transfer in Red-Light-Emitting Eu-Doped ZnO Nanowire Arrays, Dandan Wang, Guozhong Xing, Ming Gao, Lili Yang, Jinghai Yang, and Tom Wu, J. Phys. Chem. C 115, 46, 22729-22735. https://doi.org/10.1021/jp204572v
[42] Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method, M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K. H. Chae, R. Jayavel, and T. Jimbo, Journal of Applied Physics 108, 053904 (2010). https://doi.org/10.1063/1.3475992
[43] Effect of Cobalt Doping on Structural, Optical, and Magnetic Properties of ZnO Nanoparticles Synthesized by Coprecipitation Method, Vijayaprasath Gandhi, Ravi Ganesan, Haja Hameed Abdulrahman Syedahamed, and Mahalingam Thaiyan, J. Phys. Chem. C 2014, 118, 9715−9725. https://doi.org/10.1021/jp411848t
[44] Synthesis and Characterization of Dysprosium-Doped ZnO Nanoparticles for Photocatalysis of a Textile Dye under Visible Light Irradiation, Alireza Khataee, Reza Darvishi Cheshmeh Soltani, Younes Hanifehpour, Mahdie Safarpour, Habib Gholipour Ranjbar, and Sang Woo Joo, Ind. Eng. Chem. Res. 2014, 53, 1924−1932. https://doi.org/10.1021/ie402743u
[45] J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, J. Colloid. Inter. Sci. 401, 40 (2013), J.C. Sin, https://doi.org/10.1016/j.jcis.2013.03.043
[46] S.M. Lam, K.T. Lee, A.R. Mohamed, Ceram. Inter. 39, 5833 (2013). https://doi.org/10.1016/j.ceramint.2013.01.004
[47] Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures, Benxia Li and Yanfen Wang, J. Phys. Chem. C 2010, 114, 890-896. https://doi.org/10.1021/jp909478q