Bioinspired zinc-based nanomaterials: Synthesis, biomedical, environmental and agricultural applications

$40.00

Bioinspired zinc-based nanomaterials: Synthesis, biomedical, environmental and agricultural applications

P.R. Bhilkar, K. Shrivastav, A.S. Kahate, S. Tripathy, R.S. Madankar, A.R. Chaudhary, A.A. Balki, A.P. Lambat, M.S. Nagmote, S. Somkuwar, R.G. Chaudhary

Metal-based nanomaterials play a vital role in the progress of solid-state nanomaterial science as they have numerous benefits in various areas of human life from health sciences to nanotechnology. Specially, Zinc-based nanomaterials (Zn-based NMs) drawn the attention worldwide due to their biocompatible, sustainable, and economical nature. Zn-based NMs have been widely used in various sectors viz., biomedical, clinical, semiconductors, photoluminescence, photocatalysis, agriculture, water treatment and many more because of their high surface area, excellent porosity, stability, scaffold morphology, good optical and electrochemical property. Because of this they can emerge as potential material in a variety of potential fields such as optics, biomedicine and environment. Since, many conventional routes have been used to synthesize Zn-based NMs, however, biogenic approaches are widely employed recently. By keeping this scenario in mind, the present chapter focuses on biogenic synthesis of Zn-based NMs with their excellent properties and its utility in biomedical, environmental and agriculture sector.

Keywords
Zn-Based NMs, Bioinspired Synthesis, Optical Properties, Biomedical Applications, Photocatalytical Activity

Published online 10/20/2024, 32 pages

Citation: P.R. Bhilkar, K. Shrivastav, A.S. Kahate, S. Tripathy, R.S. Madankar, A.R. Chaudhary, A.A. Balki, A.P. Lambat, M.S. Nagmote, S. Somkuwar, R.G. Chaudhary, Bioinspired zinc-based nanomaterials: Synthesis, biomedical, environmental and agricultural applications, Materials Research Foundations, Vol. 169, pp 81-112, 2024

DOI: https://doi.org/10.21741/9781644903261-4

Part of the book on Green Synthesis and Emerging Applications of Frontier Nanomaterials

References
[1] S.C.C. Arruda, A.L.D. Silva, R.M. Galazzi, R.A. Azevedo, M.A.Z. Arruda, Nanoparticles applied to plant science: a review, Talanta, 131 (2015) 693-705. https://doi.org/10.1016/j.talanta.2014.08.050
[2] H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications, Ceramics International, 43 (2017) 907-914. https://doi.org/10.1016/j.ceramint.2016.10.051
[3] S. Mondal, M.S. Nagmote, S.V. Kombe, B.K. Dutta, T.L. Lambat, P.B. Chouke, A. Mondal, Ecofriendly microorganism assisted fabrication of metal nanoparticles and their applications, Biogenic Sustainable Nanotechnology, Elsevier, 2022, pp. 77-105. https://doi.org/10.1016/B978-0-323-88535-5.00002-0
[4] A. Haldar, K.M. Dadure, D. Mahapatra, R.G. Chaudhary, Natural extracts-mediated biosynthesis of Zinc Oxide nanoparticles and their multiple pharmacotherapeutic perspectives, Jordan Journal of Physics, 15 (2022) 67-79. https://doi.org/10.47011/15.1.10
[5] Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer, Advanced Materials, 23 (2011) 1679-1683. https://doi.org/10.1002/adma.201004301
[6] Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties, Journal of nanoscience and nanotechnology, 5 (2005) 1561-1573. https://doi.org/10.1166/jnn.2005.182
[7] A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, 72 (2009) 126501. https://doi.org/10.1088/0034-4885/72/12/126501
[8] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study, Science and Technology of Advanced Materials, (2008). https://doi.org/10.1088/1468-6996/9/3/035004
[9] W. Maret, Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins, Biometals, 24 (2011) 411-418. https://doi.org/10.1007/s10534-010-9406-1
[10] Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz, A.V. Zvyagin, Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport, Biomedical Optics Express, 2 (2011) 3321-3333. https://doi.org/10.1364/BOE.2.003321
[11] P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications, Drug discovery Today, 22 (2017) 1825-1834. https://doi.org/10.1016/j.drudis.2017.08.006
[12] Z.-Y. Zhang, H.-M. Xiong, Photoluminescent ZnO nanoparticles and their biological applications, Materials, 8 (2015) 3101-3127. https://doi.org/10.3390/ma8063101
[13] S. Kim, S.Y. Lee, H.-J. Cho, Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma, Nanomaterials, 7 (2017) 354. https://doi.org/10.3390/nano7110354
[14] H.M. Xiong, ZnO nanoparticles applied to bioimaging and drug delivery, Advanced Materials, 25 (2013) 5329-5335. https://doi.org/10.1002/adma.201301732
[15] I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, D.Y. Goswami, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications, Materials Science in Semiconductor Processing, 16 (2013) 2070-2083. https://doi.org/10.1016/j.mssp.2013.06.017
[16] P. Bhilkar, A. Bodhne, S. Yerpude, R. Madankar, S. Somkuwar, A. Chaudhary, A. Lambat, M. Desimone, R. Sharma, R. Chaudhary, Phyto-derived Metal Nanoparticles: Prominent Tool for Biomedical Applications, OpenNano, (2023) 100192. https://doi.org/10.1016/j.onano.2023.100192
[17] P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, Bioinspired metal/metal oxide nanoparticles: A road map to potential applications, Materials Today Advances, 16 (2022) 100314. https://doi.org/10.1016/j.mtadv.2022.100314
[18] P. B Chouke, A. K Potbhare, G. S Bhusari, S. Somkuwar, D. PMD Shaik, R. K Mishra, R. Gomaji Chaudhary, Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity, Advanced Materials Letters, 10 (2019) 355-360. https://doi.org/10.5185/amlett.2019.2235
[19] P. Chouke, A. Potbhare, K. Dadure, A. Mungole, N. Meshram, R. Chaudhary, A. Rai, R. Chaudhary, An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay, Materials Today: Proceedings, 29 (2020) 815-821. https://doi.org/10.1016/j.matpr.2020.04.758
[20] T. Sutharappa Kaliyamoorthy, V. Subramaniyan, S. Renganathan, V. Elavarasan, J. Ravi, P. Prabhakaran Kala, P. Subramaniyan, S. Vijayakumar, Sustainable Environmental-Based ZnO Nanoparticles Derived from Pisonia grandis for Future Biological and Environmental Applications, Sustainability, 14 (2022) 17009. https://doi.org/10.3390/su142417009
[21] M. Tariq, A.U. Khan, A.U. Rehman, S. Ullah, A.U. Jan, Z.U.H. Khan, N. Muhammad, Z.U. Islam, Q. Yuan, Green synthesis of Zno@ GO nanocomposite and its’ efficient antibacterial activity, Photodiagnosis and Photodynamic Therapy, 35 (2021) 102471. https://doi.org/10.1016/j.pdpdt.2021.102471
[22] R. Sánchez-Albores, F.J. Cano, P. Sebastian, O. Reyes-Vallejo, Microwave-assisted biosynthesis of ZnO-GO particles using orange peel extract for photocatalytic degradation of methylene blue, Journal of Environmental Chemical Engineering, 10 (2022) 108924. https://doi.org/10.1016/j.jece.2022.108924
[23] M. Umekar, R. Chaudhary, G. Bhusari, A. Potbhare, Fabrication of zinc oxide-decorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum, Emerging Materials Research, 10 (2021) 75-84. https://doi.org/10.1680/jemmr.19.00175
[24] R.G. Chaudhary, A.K. Potbhare, S.T. Aziz, M.S. Umekar, S.S. Bhuyar, A. Mondal, Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances, Materials Today: Proceedings, 36 (2021) 756-762. https://doi.org/10.1016/j.matpr.2020.05.821
[25] N. Pandiyan, B. Murugesan, M. Arumugam, J. Sonamuthu, S. Samayanan, S. Mahalingam, Ionic liquid-a greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities, Journal of Photochemistry and Photobiology B: Biology, 198 (2019) 111559. https://doi.org/10.1016/j.jphotobiol.2019.111559
[26] F.A. Jan, R. Ullah, N. Ullah, M. Usman, Exploring the environmental and potential therapeutic applications of Myrtus communis L. assisted synthesized zinc oxide (ZnO) and iron doped zinc oxide (Fe-ZnO) nanoparticles, Journal of Saudi Chemical Society, 25 (2021) 101278. https://doi.org/10.1016/j.jscs.2021.101278
[27] R. Subbiah, S. Muthukumaran, V. Raja, Phyto-assisted synthesis of Mn and Mg Co-doped ZnO nanostructures using Carica papaya leaf extract for photocatalytic applications, BioNanoScience, 11 (2021) 1127-1141. https://doi.org/10.1007/s12668-021-00890-x
[28] K.D. Dejen, E.A. Zereffa, H.A. Murthy, A. Merga, Synthesis of ZnO and ZnO/PVA nanocomposite using aqueous Moringa oleifeira leaf extract template: antibacterial and electrochemical activities, Reviews on Advanced Materials Science, 59 (2020) 464-476. https://doi.org/10.1515/rams-2020-0021
[29] K. Subashini, S. Prakash, V. Sujatha, Biological applications of green synthesized zinc oxide and nickel oxide nanoparticles mediated poly (glutaric acid-co-ethylene glycol-co-acrylic acid) polymer nanocomposites, Inorganic Chemistry Communications, 139 (2022) 109314. https://doi.org/10.1016/j.inoche.2022.109314
[30] M. Barani, M. Masoudi, M. Mashreghi, A. Makhdoumi, H. Eshghi, Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation, International Journal of Pharmaceutics, 606 (2021) 120878. https://doi.org/10.1016/j.ijpharm.2021.120878
[31] P. Dhandapani, A.S. Siddarth, S. Kamalasekaran, S. Maruthamuthu, G. Rajagopal, Bio-approach: ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties, Carbohydrate polymers, 103 (2014) 448-455. https://doi.org/10.1016/j.carbpol.2013.12.074
[32] S. Azizi, M.B. Ahmad, F. Namvar, R. Mohamad, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract, Materials Letters, 116 (2014) 275-277. https://doi.org/10.1016/j.matlet.2013.11.038
[33] E. Selvarajan, V. Mohanasrinivasan, Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07, Materials Letters, 112 (2013) 180-182. https://doi.org/10.1016/j.matlet.2013.09.020
[34] V. Ganesan, M. Hariram, S. Vivekanandhan, S. Muthuramkumar, Periconium sp.(endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications, Materials Science in Semiconductor Processing, 105 (2020) 104739. https://doi.org/10.1016/j.mssp.2019.104739
[35] C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, K.B. Rao, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90 (2012) 78-84. https://doi.org/10.1016/j.saa.2012.01.006
[36] J.A. Tanna, R.G. Chaudhary, H.D. Juneja, N.V. Gandhare, A.R. Rai, Histidine-capped ZnO nanoparticles: an efficient synthesis, spectral characterization and effective antibacterial activity, BioNanoScience, 5 (2015) 123-134. https://doi.org/10.1007/s12668-015-0170-0
[37] M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity, Colloids and Surfaces B: Biointerfaces, 117 (2014) 233-239. https://doi.org/10.1016/j.colsurfb.2014.02.017
[38] A. Taşdemir, N. Akman, A. Akkaya, R. Aydın, B. Şahin, Green and cost-effective synthesis of zinc oxide thin films by L-ascorbic acid (AA) and their potential for electronics and antibacterial applications, Ceramics International, 48 (2022) 10164-10173. https://doi.org/10.1016/j.ceramint.2021.12.228
[39] J.Z. Marinho, F.d.C. Romeiro, S.C.S. Lemos, F.V.d. Motta, C. Riccardi, M.S. Li, E. Longo, R.C.d. Lima, Urea-based synthesis of zinc oxide nanostructures at low temperature, Journal of Nanomaterials, 2012 (2012) 3-3. https://doi.org/10.1155/2012/427172
[40] S.-J. Kim, C.W. Na, I.-S. Hwang, J.-H. Lee, One-pot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection, Sensors and Actuators B: Chemical, 168 (2012) 83-89. https://doi.org/10.1016/j.snb.2012.01.045
[41] B. Peychev, P. Vasileva, Novel starch-mediated synthesis of Au/ZnO nanocrystals and their photocatalytic properties, Heliyon, 7 (2021) e07402 . https://doi.org/10.1016/j.heliyon.2021.e07402
[42] M.T. Klug, N.m.-M. Dorval Courchesne, Y.E. Lee, D.S. Yun, J. Qi, N.C. Heldman, P.T. Hammond, N.X. Fang, A.M. Belcher, Mediated growth of zinc chalcogen shells on gold nanoparticles by free-base amino acids, Chemistry of Materials, 29 (2017) 6993-7001. https://doi.org/10.1021/acs.chemmater.7b02571
[43] S.T. Yerpude, A.K. Potbhare, P. Bhilkar, A.R. Rai, R.P. Singh, A.A. Abdala, R. Adhikari, R. Sharma, R.G. Chaudhary, Biomedical and clinical applications of platinum-based nanohybrids: An update review, Environmental Research, 231 (2023) 116148. https://doi.org/10.1016/j.envres.2023.116148
[44] S. Pal, S. Mondal, J. Maity, R. Mukherjee, Synthesis and characterization of ZnO nanoparticles using Moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity, International Journal of Nanoscience and Nanotechnology, 14 (2018) 111-119.
[45] A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Letters, 7 (2015) 219-242. https://doi.org/10.1007/s40820-015-0040-x
[46] H. Agarwal, S.V. Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach, Resource-Efficient Technologies, 3 (2017) 406-413. https://doi.org/10.1016/j.reffit.2017.03.002
[47] J.M. Galdopórpora, S. Municoy, F. Ibarra, V. Puente, P.E. Antezana, M.I.A. Echazú, M.F. Desimone, A green synthesis method to tune the morphology of CuO and ZnO nanostructures, Current Nanoscience, 19 (2023) 186-193. https://doi.org/10.2174/1573413717666210921152709
[48] S.J.M. Rosid, S.M. Rosid, N.A. Nasir, W.N.W. Abdullah, N.N. Mohamed, Antimicrobial potentialities: special emphasis on metal and metal oxide-based bionanomaterials, Bionanomaterials for Environmental and Agricultural Applications, IOP Publishing Bristol, UK2021, pp. 2-1-2-32. https://doi.org/10.1088/978-0-7503-3863-9ch2
[49] T. Shrirame, P. Bhilkar, A. Chaudhary, A. Rai, R. Singh, P. Dhongle, S. Thakare, A. Abdala, R. Chaudhary, Magnetic Nanoparticles: Fabrications and applications in cancer therapy and diagnosis, magnetic nanoparticles for biomedical applications, 143 (2023) 199-232. https://doi.org/10.21741/9781644902335-7
[50] S. Faisal, H. Jan, S.A. Shah, S. Shah, A. Khan, M.T. Akbar, M. Rizwan, F. Jan, Wajidullah, N. Akhtar, Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications, ACS Omega, 6 (2021) 9709-9722. https://doi.org/10.1021/acsomega.1c00310
[51] D. Kalaimurgan, K. Lalitha, R.K. Govindarajan, K. Unban, M.S. Shivakumar, S. Venkatesan, C. Khanongnuch, F.M. Husain, F.A. Qais, I. Hasan, Biogenic synthesis of zinc oxide nanoparticles using Drynaria Quercifolia tuber extract for antioxidant, antibiofilm, larvicidal, and photocatalytic applications, Biomass Conversion and Biorefinery, (2023) 1-17. https://doi.org/10.1007/s13399-023-04751-3 https://doi.org/10.1007/s13399-023-05133-5
[52] L. Mosquera-Sánchez, P. Arciniegas-Grijalba, M. Patiño-Portela, B.E. Guerra-Sierra, J. Muñoz-Florez, J. Rodríguez-Páez, Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops, Biocatalysis and Agricultural Biotechnology, 25 (2020) 101579. https://doi.org/10.1016/j.bcab.2020.101579
[53] H. Jan, M. Shah, H. Usman, M.A. Khan, M. Zia, C. Hano, B.H. Abbasi, Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora), Frontiers in Materials, 7 (2020) 249. https://doi.org/10.3389/fmats.2020.00249
[54] P. Panchal, D.R. Paul, A. Sharma, P. Choudhary, P. Meena, S. Nehra, Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water, Journal of Colloid and Interface Science, 563 (2020) 370-380. https://doi.org/10.1016/j.jcis.2019.12.079
[55] M.I. Khan, S.K. Behera, P. Paul, B. Das, M. Suar, R. Jayabalan, D. Fawcett, G.E.J. Poinern, S.K. Tripathy, A. Mishra, Biogenic Au@ ZnO core-shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency, Medical Microbiology and Immunology, 208 (2019) 609-629. https://doi.org/10.1007/s00430-018-0564-z
[56] G. Madhan, A.A. Begam, L.V. Varsha, R. Ranjithkumar, D. Bharathi, Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity, International Journal of Biological Macromolecules, 190 (2021) 259-269. https://doi.org/10.1016/j.ijbiomac.2021.08.100
[57] E. Nagaraj, P. Shanmugam, K. Karuppannan, T. Chinnasamy, S. Venugopal, The biosynthesis of a graphene oxide-based zinc oxide nanocomposite using Dalbergia latifolia leaf extract and its biological applications, New Journal of Chemistry, 44 (2020) 2166-2179. https://doi.org/10.1039/C9NJ04961D
[58] K. Karthikeyan, M. Chandraprabha, R.H. Krishna, K. Samrat, A. Sakunthala, M. Sasikumar, Optical and antibacterial activity of biogenic core-shell ZnO@ TiO2 nanoparticles, Journal of the Indian Chemical Society, 99 (2022) 100361. https://doi.org/10.1016/j.jics.2022.100361
[59] A. Jafari, M. Ghane, M. Sarabi, F. Siyavoshifar, Synthesis and antibacterial properties of zinc oxide combined with copper oxide nanocrystals, Oriental Journal of Chemistry, 27 (2011) 811.
[60] S. Hussain, N. Khakwani, Y. Faiz, S. Zulfiqar, Z. Shafiq, F. Faiz, A. Elhakem, R. Sami, N. Aljuraide, T. Farid, Green production and interaction of carboxylated CNTs/Biogenic ZnO Composite for Antibacterial activity, Bioengineering, 9 (2022) 437. https://doi.org/10.3390/bioengineering9090437
[61] A. Rahman, A.L. Tan, M.H. Harunsani, N. Ahmad, M. Hojamberdiev, M.M. Khan, Visible light induced antibacterial and antioxidant studies of ZnO and Cu-doped ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam, Journal of Environmental Chemical Engineering, 9 (2021) 105481. https://doi.org/10.1016/j.jece.2021.105481
[62] C. Shen, S.A. James, M.D. de Jonge, T.W. Turney, P.F. Wright, B.N. Feltis, Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells, Toxicological Sciences, 136 (2013) 120-130. https://doi.org/10.1093/toxsci/kft187
[63] A. Manke, L. Wang, Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity, BioMed Research International, 2013 (2013) 942916. https://doi.org/10.1155/2013/942916
[64] N. Ngoepe, Z. Mbita, M. Mathipa, N. Mketo, B. Ntsendwana, N. Hintsho-Mbita, Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications, Ceramics International, 44 (2018) 16999-17006. https://doi.org/10.1016/j.ceramint.2018.06.142
[65] N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, M. Vimalan, I.V. Potheher, Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities, New Journal of Chemistry, 41 (2017) 10347-10356. https://doi.org/10.1039/C7NJ02664A
[66] B. Gowdhami, M. Jaabir, G. Archunan, N. Suganthy, Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis, Materials Science and Engineering: C, 103 (2019) 109840. https://doi.org/10.1016/j.msec.2019.109840
[67] A.H. Hashem, G.S. El-Sayyad, Antimicrobial and anticancer activities of biosynthesized bimetallic silver-zinc oxide nanoparticles (Ag-ZnO NPs) using pomegranate peel extract, Biomass Conversion and Biorefinery, (2023) 1-13. https://doi.org/10.1007/s13399-023-04126-8 https://doi.org/10.1007/s13399-023-04126-8
[68] E.E. Elemike, D.C. Onwudiwe, M. Singh, Eco-friendly synthesis of copper oxide, zinc oxide and copper oxide-zinc oxide nanocomposites, and their anticancer applications, Journal of Inorganic and Organometallic Polymers and Materials, 30 (2020) 400-409. https://doi.org/10.1007/s10904-019-01198-w
[69] S. Vijayakumar, J. Chen, V. Kalaiselvi, K. Tungare, M. Bhori, Z.I. González-Sánchez, E.F. Durán-Lara, Marine polysaccharide laminarin embedded ZnO nanoparticles and their based chitosan capped ZnO nanocomposites: Synthesis, characterization and in vitro and in vivo toxicity assessment, Environmental Research, 213 (2022) 113655. https://doi.org/10.1016/j.envres.2022.113655
[70] M. Batool, S. Khurshid, W.M. Daoush, S.A. Siddique, T. Nadeem, Green synthesis and biomedical applications of ZnO nanoparticles: role of PEGylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231 (TNBC) cells line, Crystals, 11 (2021) 344. https://doi.org/10.3390/cryst11040344
[71] A. Regmi, B.R. Bhattarai, S.K. Gautam, Synthesis and microscopic study of zinc sulfide nanoparticles, 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), IEEE, 2019, pp. 1-4. https://doi.org/10.1109/IC4ME247184.2019.9036683
[72] S.M. Husseiny, T.A. Salah, H.A. Anter, Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities, Beni-Suef University Journal of Basic and Applied Sciences, 4 (2015) 225-231. https://doi.org/10.1016/j.bjbas.2015.07.004
[73] A. Żaba, S. Sovinska, W. Kasprzyk, D. Bogdał, K. Matras-Postołek, Zinc sulphide (ZNS) nanparticles for advanced application, Czasopismo Techniczne, 2016 (2016) 125-134.
[74] R.K. Sahoo, S. Rani, V. Kumar, U. Gupta, Zinc oxide nanoparticles for bioimaging and drug delivery, Nanostructured Zinc Oxide, Elsevier, 2021, pp. 483-509. https://doi.org/10.1016/B978-0-12-818900-9.00021-8
[75] S. Sudhagar, S. Sathya, K. Pandian, B.S. Lakshmi, Targeting and sensing cancer cells with ZnO nanoprobes in vitro, Biotechnology Letters, 33 (2011) 1891-1896. https://doi.org/10.1007/s10529-011-0641-5
[76] Y. Liu, K. Ai, Q. Yuan, L. Lu, Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging, Biomaterials, 32 (2011) 1185-1192. https://doi.org/10.1016/j.biomaterials.2010.10.022
[77] W. Wanas, S.A. Abd El-Kaream, S. Ebrahim, M. Soliman, M. Karim, Cancer bioimaging using dual mode luminescence of graphene/FA-ZnO nanocomposite based on novel green technique, Scientific Reports, 13 (2023) 27. https://doi.org/10.1038/s41598-022-27111-z
[78] N.-H. Cho, T.-C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.-S. Yang, S. Kim, Y.K. Kim, S.-Y. Seong, A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy, Nature Nanotechnology, 6 (2011) 675-682. https://doi.org/10.1038/nnano.2011.149
[79] G. Lei, S. Yang, R. Cao, P. Zhou, H. Peng, R. Peng, X. Zhang, Y. Yang, Y. Li, M. Wang, In situ preparation of amphibious ZnO quantum dots with blue fluorescence based on hyperbranched polymers and their application in bio-imaging, Polymers, 12 (2020) 144. https://doi.org/10.3390/polym12010144
[80] R.R. Sawkar, M.M. Shanbhag, S.M. Tuwar, K. Mondal, N.P. Shetti, Zinc Oxide-Graphene nanocomposite-based sensor for the electrochemical determination of cetirizine, Catalysts, 12 (2022) 1166. https://doi.org/10.3390/catal12101166
[81] Z. Hatami, E. Ragheb, F. Jalali, M.A. Tabrizi, M. Shamsipur, Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor, Bioelectrochemistry, 133 (2020) 107458. https://doi.org/10.1016/j.bioelechem.2020.107458
[82] M.-S. Ahn, R. Ahmad, K.S. Bhat, J.-Y. Yoo, T. Mahmoudi, Y.-B. Hahn, Fabrication of a solution-gated transistor based on valinomycin modified iron oxide nanoparticles decorated zinc oxide nanorods for potassium detection, Journal of Colloid and Interface science, 518 (2018) 277-283. https://doi.org/10.1016/j.jcis.2018.02.041
[83] R. Tomar, A. A. Abdala, R.G. Chaudhary, N.B. Singh, Photocatalytic degradation of dyes by nanomaterials, Materials Today: Proceedings, 29, (2020), 967-973. https://doi.org/10.1016/j.matpr.2020.04.144
[84] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A.R. Rai, H.D. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ -Bi2O3 microspindles, Nano-Structures & Nano-Objects, 13 (2018), 121-131 https://doi.org/10.1016/j.nanoso.2018.01.002
[85] V.N. Sonkusare, R.G. Chaudhary, G.S. Bhusari, A. Mondal, A.K. Potbhare, R.K. Mishra, H.D. Juneja A.A. Abdala Mesoporous Octahedron-Shaped Tricobalt Tetroxide Nanoparticles for Photocatalytic Degradation of Toxic Dyes, ACS Omega, 5 (2020), 7823-7835. https://doi.org/10.1021/acsomega.9b03998
[86] R.G. Chaudhary, V. Sonkusare, G. Bhusari, A. Mondal, A.K. Potbhare, R. Sharma, H.D. Juneja, A.A. Abdala, Preparation of mesoporous ThO2 nanoparticles: influence of calcination on morphology and visible-Light-driven photocatalytic degradation of indigo carmine and methylene blue, Enviornmental Research, 222 (2023) 115363. https://doi.org/10.1016/j.envres.2023.115363
[87] R. Vinu, G. Madras, Environmental remediation by photocatalysis, Journal of the Indian Institute of Science, 90 (2010) 189-230.
[88] A. Potbhare, P. Bhilkar, S. Yerpude, R. Madankar, S. Shingda, R. Adhikari, R. Chaudhary, Nanomaterials as Photocatalyst, Appl. Emerg. Nanomater. Nanotechnol, 148 (2023) 304-333. https://doi.org/10.21741/9781644902554-11
[89] L. Kaliraj, J.C. Ahn, E.J. Rupa, S. Abid, J. Lu, D.C. Yang, Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination, Journal of Photochemistry and Photobiology B: Biology, 199 (2019) 111588. https://doi.org/10.1016/j.jphotobiol.2019.111588
[90] K. Kanagamani, P. Muthukrishnan, K. Saravanakumar, K. Shankar, A. Kathiresan, Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity, Rare Metals, 38 (2019) 277-286. https://doi.org/10.1007/s12598-018-1189-5
[91] J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres, Environmental Science & Technology, 42 (2008) 4902-4907. https://doi.org/10.1021/es800036n
[92] C. Tian, Q. Zhang, B. Jiang, G. Tian, H. Fu, Glucose-mediated solution-solid route for easy synthesis of Ag/ZnO particles with superior photocatalytic activity and photostability, Journal of Alloys and Compounds, 509 (2011) 6935-6941. https://doi.org/10.1016/j.jallcom.2011.04.005
[93] S. Vishwanathan, S. Das, Glucose-mediated one-pot hydrothermal synthesis of hollow magnesium oxide-zinc oxide (MgO-ZnO) microspheres with enhanced natural sunlight photocatalytic activity, Environmental Science and Pollution Research, 30 (2023) 8512-8525. https://doi.org/10.1007/s11356-022-20283-1
[94] O.A. Zelekew, P.A. Fufa, F.K. Sabir, A.D. Duma, Water hyacinth plant extract mediated green synthesis of Cr2O3/ZnO composite photocatalyst for the degradation of organic dye, Heliyon, 7 (2021) e07652. https://doi.org/10.1016/j.heliyon.2021.e07652
[95] R. Atchudan, T.N.J.I. Edison, S. Perumal, D. Karthikeyan, Y.R. Lee, Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation, Journal of Photochemistry and Photobiology B: Biology, 162 (2016) 500-510. https://doi.org/10.1016/j.jphotobiol.2016.07.019
[96] K. Bhuvaneswari, G. Palanisamy, G. Bharathi, T. Pazhanivel, I.R. Upadhyaya, M.A. Kumari, R. Rajesh, M. Govindasamy, A. Ghfar, N.H. Al-Shaalan, Visible light driven reduced graphene oxide supported ZnMgAl LTH/ZnO/g-C3N4 nanohybrid photocatalyst with notable two-dimension formation for enhanced photocatalytic activity towards organic dye degradation, Environmental Research, 197 (2021) 111079. https://doi.org/10.1016/j.envres.2021.111079
[97] E.Y. Shaba, J.O. Jacob, J.O. Tijani, M.A.T. Suleiman, A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment, Applied Water Science, 11 (2021) 1-41. https://doi.org/10.1007/s13201-021-01370-z
[98] Mayuri S. Umekar, Ganesh S. Bhusari, Toshali Bhoyar, Vidyasagar Devthade, Bharat P. Kapgate, Ajay P. Potbhare, Ratiram G. Chaudhary and Ahmed A. Abdala, Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants, Current Nanoscience, 19 (2) 2023, 148-169. https://doi.org/10.2174/1573413718666220127123935
[99] M.S. Nagmote, A.R. Rai, R. Sharma, M.F. Desimone, R.G. Chaudhary, NB Singh, Bioremediation of heavy metals using microorganisms, Genetically engineered organisms in bioremediation, CRC Press, 2024, pp.168-190. https://doi.org/10.1201/9781003188568-11
[100] S. Azizi, M. Mahdavi Shahri, R. Mohamad, Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies, Molecules, 22 (2017) 831. https://doi.org/10.3390/molecules22060831
[101] G. Yuvaraja, C. Prasad, Y. Vijaya, M.V. Subbaiah, Application of ZnO nanorods as an adsorbent material for the removal of As (III) from aqueous solution: kinetics, isotherms and thermodynamic studies, International Journal of Industrial Chemistry, 9 (2018) 17-25. https://doi.org/10.1007/s40090-018-0136-5
[102] M. Sharma, J. Singh, S. Hazra, S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ ZnO monoliths: adsorption and kinetic studies, Microchemical Journal, 145 (2019) 105-112. https://doi.org/10.1016/j.microc.2018.10.026
[103] G.J. Cruz, D. Mondal, J. Rimaycuna, K. Soukup, M.M. Gómez, J.L. Solis, J. Lang, Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water, Journal of Environmental Chemical Engineering, 8 (2020) 103800. https://doi.org/10.1016/j.jece.2020.103800
[104] J. Yu, C. Jiang, Q. Guan, P. Ning, J. Gu, Q. Chen, J. Zhang, R. Miao, Enhanced removal of Cr (VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth, Chemosphere, 195 (2018) 632-640. https://doi.org/10.1016/j.chemosphere.2017.12.128
[105] M.H. Dehghani, P. Mahdavi, Z. Heidarinejad, The experimental data of investigating the efficiency of zinc oxide nanoparticles technology under ultraviolet radiation (UV/ZnO) to remove Acid-32-Cyanine 5R from aqueous solutions, Data in Brief, 21 (2018) 767-774. https://doi.org/10.1016/j.dib.2018.10.037
[106] S.M.T.H. Moghaddas, B. Elahi, V. Javanbakht, Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation, Journal of Alloys and Compounds, 821 (2020) 153519. https://doi.org/10.1016/j.jallcom.2019.153519
[107] A.F. Beevi, G. Sreekala, B. Beena, Synthesis, characterization and photocatalytic activity of SnO2, ZnO nanoparticles against congo red: A comparative study, Materials Today: Proceedings, 45 (2021) 4045-4051. https://doi.org/10.1016/j.matpr.2020.10.755
[108] A. Maleki, F. Moradi, B. Shahmoradi, R. Rezaee, S.-M. Lee, The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate, Journal of Molecular Liquids, 297 (2020) 111918. https://doi.org/10.1016/j.molliq.2019.111918
[109] M. Rani, J. Yadav, U. Shanker, Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides, Journal of Colloid and Interface Science, 601 (2021) 689-703. https://doi.org/10.1016/j.jcis.2021.05.152
[110] Z. Zhu, F. Guo, Z. Xu, X. Di, Q. Zhang, Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite, RSC Advances, 10 (2020) 11929-11938. https://doi.org/10.1039/D0RA01741H
[111] X. Huang, F. Guo, M. Li, H. Ren, Y. Shi, L. Chen, Hydrothermal synthesis of ZnSnO3 nanoparticles decorated on g-C3N4 nanosheets for accelerated photocatalytic degradation of tetracycline under the visible-light irradiation, Separation and Purification Technology, 230 (2020) 115854. https://doi.org/10.1016/j.seppur.2019.115854
[112] J.M. Chaba, P.N. Nomngongo, Effective adsorptive removal of amoxicillin from aqueous solutions and wastewater samples using zinc oxide coated carbon nanofiber composite, Emerging Contaminants, 5 (2019) 143-149. https://doi.org/10.1016/j.emcon.2019.04.001
[113] H. Chen, R. Yada, Nanotechnologies in agriculture: new tools for sustainable development, Trends in Food Science & Technology, 22 (2011) 585-594. https://doi.org/10.1016/j.tifs.2011.09.004
[114] N.B. Singh, R.G. Chaudhary, M.F. Desimone, A. Agrawal, S.K. Shukla, Green synthesized nanomaterials for safe technology in sustainable agriculture, Current Pharmaceutical Biotechnology, 24 (2023) 61-85. https://doi.org/10.2174/1389201023666220608113924
[115] V. Selivanov, E. Zorin, Sustained Action of ultrafine metal powders on seeds of grain crops, Perspekt. Materialy, 4 (2001) 66-69.
[116] Al-Qudah Tamara; M.H. Sami; Abu-Zurayk Rund; Shibli Rida; Khalaf Aya;T.L. Lambat R.G. Chaudhary, Nanotechnology applications in plant tissue culture and molecular genetics: a holistic approach, Current Nanoscience, 18 (4) (2022) 442-464. https://doi.org/10.2174/1573413717666211118111333
[117] L.M. Batsmanova, L. Gonchar, N.Y. Taran, A. Okanenko, Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals, Sumy State University, 2013.
[118] T. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K.R. Reddy, T. Sreeprasad, P. Sajanlal, T. Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut, Journal of Plant Nutrition, 35 (2012) 905-927. https://doi.org/10.1080/01904167.2012.663443
[119] P. Keerthana, S. Vijayakumar, E. Vidhya, V. Punitha, M. Nilavukkarasi, P. Praseetha, Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants, Industrial Crops and Products, 170 (2021) 113762. https://doi.org/10.1016/j.indcrop.2021.113762
[120] A.C. Pandey, S. S. Sanjay, R. S. Yadav, Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum, Journal of Experimental Nanoscience, 5 (2010) 488-497. https://doi.org/10.1080/17458081003649648
[121] S.A. Durgude, S. Ram, R. Kumar, S.V. Singh, V. Singh, A.G. Durgude, B. Pramanick, S. Maitra, A. Gaber, A. Hossain, Synthesis of mesoporous silica and graphene-based FeO and ZnO nanocomposites for nutritional biofortification and sustained the productivity of rice (Oryza sativa L.), Journal of Nanomaterials, (2022). https://doi.org/10.1155/2022/5120307. https://doi.org/10.1155/2022/5120307
[122] N. Dispat, S. Poompradub, S. Kiatkamjornwong, Synthesis of ZnO/SiO2-modified starch-graft-polyacrylate superabsorbent polymer for agricultural application, Carbohydrate Polymers, 249 (2020) 116862. https://doi.org/10.1016/j.carbpol.2020.116862
[123] N.C. Martins, A. Avellan, S. Rodrigues, D. Salvador, S.M. Rodrigues, T. Trindade, Composites of biopolymers and ZnO NPs for controlled release of zinc in agricultural soils and timed delivery for maize, ACS Applied Nano Materials, 3 (2020) 2134-2148. https://doi.org/10.1021/acsanm.9b01492