First principles studies of electronic and optical properties of Ternary semiconductors AgAlX2 (X = S, Se, Te)

$12.50

M.OULEDALI, S. LOUHIBI-FASLA, B. AMRANI

Abstract. Using first-principle, the electronic and optical properties of chalcopyrite AgAlX2 (X=S, Se, Te) are investigated. These materials have recently shown great interest and applications such as photovoltaic conversion. The calculations have been performed using the density functional theory (DFT) as implemented within the full potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. For exchange and correlation energy treatment, we employed the generalized gradient approximation (GGA) proposed by Perdew et al. To calculate the accurate band structure, recently modified Becke Johnson (mBJ) potential was suggested as an alternative. Optical properties reveal that these compounds are suitable candidates for optoelectronic devices in the visible and ultraviolet (UV) regions. The results obtained were compared with experimental data from the literature.

Keywords
Chalcopyrites, FP-LAPW+lo, mBj, Structural Properties, Electronical Properties, Optical Properties

Published online 12/10/2016, 6 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: M.OULEDALI, S. LOUHIBI-FASLA, B. AMRANI, ‘First principles studies of electronic and optical properties of Ternary semiconductors AgAlX2 (X = S, Se, Te)’, Materials Research Proceedings, Vol. 1, pp 193-198, 2016
DOI: https://dx.doi.org/10.21741/9781945291197-49

The article was published as article 49 of the book Dielectric Materials and Applications

References
[1] L.L. Kazmerski, Nuovo Cimento D 2 (1983) 2013. https://dx.doi.org/10.1007/BF02457903
[2] J.L. Shay, L.M. Schiavone, E. Buehier, J.H. Wernick, J. Appl. Phys. 43 (1972) 2805. https://dx.doi.org/10.1063/1.1661599
[3] H. Horinaka, S. Mononobe, N. Yamamoto, Jpn. J. Appl. Phys. 32 (1993) 109 (Suppl. 32–33). https://dx.doi.org/10.7567/JJAPS.32S3.109
[4] F.K. Hopkins, Laser Focus World 31 (1995) 83.
[5] S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, B. Abbar, Comput. Mater. Sci. 38 (2006)223. https://dx.doi.org/10.1016/j.commatsci.2005.12.043
[6] L. Artus, Y. Bertrand, C. Ance, J. Phys. C: Solid State Phys. 19 (1986) 5937. https://dx.doi.org/10.1088/0022-3719/19/29/015
[7] S. Mishra, B. Ganguli / Solid State Communications 151 (2011) 523–528. https://dx.doi.org/10.1016/j.ssc.2011.01.024
[8] V. Jayalakshmi, S. Mageswari, B. Palanivel, AIP Conference Proceedings 147 2012, 1087. https://dx.doi.org/10.1063/1.4710385
[9] A.S. Verma, Philos. Mag. 89 (2009) 183. https://dx.doi.org/10.1080/14786430802593814
[10] A.S. Verma, R.K. Singh, S.K. Rathi, J. Alloys Compd. 486 (2009) 795. https://dx.doi.org/10.1016/j.jallcom.2009.07.067
[11] A.S. Verma, Solid State Commun. 149 (2009) 1236. https://dx.doi.org/10.1016/j.ssc.2009.04.011
[12] A.S. Verma, S.R. Bhardwaj, Phys. State Solidi B 243 (2006) 2858. https://dx.doi.org/10.1002/pssb.200642140
[13] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjostedt, L. Nordstrom, Phys. Rev. B 64 (2001) 195134. https://dx.doi.org/10.1103/PhysRevB.64.195134
[14] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147 (2002) 71. https://dx.doi.org/10.1016/S0010-4655(02)00206-0
[15] Z. Wu, R.E. Cohen, Phys. Rev. B 73 (2006) 235116. https://dx.doi.org/10.1103/PhysRevB.73.235116
[16] E. Engel, S.H. Vosko, Phys. Rev. B 50 (1994) 10498. https://dx.doi.org/10.1103/PhysRevB.50.10498
[17] F. Tran, P. Blaha, Phys. Rev. Lett. 102 (2009) 226401. https://dx.doi.org/10.1103/PhysRevLett.102.226401
[18] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001; K. Schwarz, P. Blaha, G.K.H. Madsen, Comp. Phys. Commun. 147 (2002) 71. https://dx.doi.org/10.1016/S0010-4655(02)00206-0
[19] B. Kohler, S. Wilke, M. Scheffler, R. Kouba, C. Ambrosch-Draxl, Comput. Phys. Commun. 94 (1996) 31. https://dx.doi.org/10.1016/0010-4655(95)00139-5
[20] F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30 (1944) 244. https://dx.doi.org/10.1073/pnas.30.9.244
[21] H. Hahn, G. Frank, W. Klingler, A. Meyer, G. Stroger, Z. Anorg. Chem. 271 (1953) 153. https://dx.doi.org/10.1002/zaac.19532710307
[22] J. E. Jaffe and A. Zunger, Phys. Rev. B29, 1882 (1984). https://dx.doi.org/10.1103/PhysRevB.29.1882
[23] V Kumar, G M Prasad and D Chandra Phys. Stat. Solidi (b) 170 77 (1992). https://dx.doi.org/10.1002/pssb.2221700108
[24] A.S. Verma, Phys. Status Solidi B 246 (2009) 192. https://dx.doi.org/10.1002/pssb.200844242
[25] Hai. Xiao, Jamil. Tahir-Kheli, William.A. Goddard, Phys. Chem. Lett. 2 (2011) 212–217. https://dx.doi.org/10.1021/jz101565j
[26] J. Sun, H.T. Wang, N.B. Ming, J. He, Y. Tian, Appl. Phys. Lett. 84 (2004) 4544. https://dx.doi.org/10.1063/1.1758781
[27] S.A. Korba, H. Meradji, S. Ghemid, B. Bouhafs, Comput. Mater. Sci. 44 (2009) 1265. https://dx.doi.org/10.1016/j.commatsci.2008.08.012
[28] P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, SpringerVerlag, Berlin, 1996. https://dx.doi.org/10.1007/978-3-662-03313-5
[29] M.Q. Cai, Z. Yin, M.S. Zhang, Appl. Phys. Lett. 83 (2003) 2805. https://dx.doi.org/10.1063/1.1616631