Сrystal Structure and Functional Properties of Ni-Fe Films
A.V. Trukhanov, S.S. Grabchikov, S.V. Trukhanov, A.A. Solobai, V.A. Turchenko, E.L. Trukhanova, T.I. Zubar, D.I. Tishkevich, D.A. Vinnik
Ni1-xFex alloys were produced in film form via electrodeposition. These samples were produced to study magnetic characteristics as a function of chemical composition Ni1-xFex with x = 0; 0.20 and 0.50 and film thickness for the Ni80Fe20 system. The chemical composition corresponds to that established before synthesis. Deviation from the calculated stoichiometry is less than 0.7 at. %. The main magnetic parameters of obtained films such as permeability, coercivity and induction were investigated as a function of Fe concentration. The permeability and coercivity as a function of the thickness for the Ni80Fe20 films were measured. The field dependence of initial permeability for these films was also measured in the thickness range from 100 nm to 80 m.
Keywords
NiFe Alloys, Permalloy Films, Crystal Structure, Magnetic Properties
Published online 9/20/2019, 18 pages
Citation: A.V. Trukhanov, S.S. Grabchikov, S.V. Trukhanov, A.A. Solobai, V.A. Turchenko, E.L. Trukhanova, T.I. Zubar, D.I. Tishkevich, D.A. Vinnik, Сrystal Structure and Functional Properties of Ni-Fe Films, Materials Research Foundations, Vol. 57, pp 57-74, 2019
DOI: https://doi.org/10.21741/9781644900390-3
Part of the book on Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys
References
[1] Y. Jiraskova,J. Bursik,I. Turek,M. Hapla,A. Titov,O. Zivotsky,Phase and magnetic studies of the high-energy alloyed Ni–Fe, J. Alloys Compd. 594 (2014) 133. https://doi.org/10.1016/j.jallcom.2014.01.138
[2] X. Zhao,Y. Dang,H. Yin,Y. Yuan,J. Lu,Z. Yang,Y. Gu,Evolution of the microstructure and microhardness of a new wrought Ni–Fe based superalloy during high temperature aging, J. Alloys Compd. 644 (2015) 66. https://doi.org/10.1016/j.jallcom.2015.04.184
[3] V. Torabinejad,A.S. Rouhaghdam, M. Aliofkhazraei,M.H. Allahyarzadeh,Electrodeposition of Ni–Fe and Ni–Fe-(nano Al2O3) multilayer coatings, J. Alloys Compd. 657 (2016) 526. https://doi.org/10.1016/j.jallcom.2015.10.154
[4] L.K. Béland,G.D. Samolyuk,R.E. Stolle,Differences in the accumulation of ion-beam damage in Ni and NiFe explained by atomistic simulations, J. Alloys Compd. 662 (2016) 415. https://doi.org/10.1016/j.jallcom.2015.11.185
[5] V. Torabinejad,M. Aliofkhazraei,S. Assareh,M.H. Allahyarzadeh,A.S. Rouhaghdam,Electrodeposition of Ni-Fe alloys, composites, and nano coatings–A review, J. Alloys Compd. 691 (2017) 841. https://doi.org/10.1016/j.jallcom.2016.08.329
[6] S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.V. Vasilenkov,Effectiveness of the magnetostatic shielding by the cylindrical shells, J. Magn. Magn. Mater. 398 (2016) 49. https://doi.org/10.1016/j.jmmm.2015.08.122
[7] M.H. Al-Saleh,Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites,J. Phys. D: Appl. Phys.49 (2016) 19. https://doi.org/10.1088/0022-3727/49/19/195302
[8] T.J. Sumner, J.M. Pendlebury,K.F. Smith,Convectional magnetic shielding,J. Phys. D: Appl. Phys.20 (1987) 1095. https://doi.org/10.1088/0022-3727/20/9/001
[9] J. Füzi, A. Iványi, Zs. Szabó,Magnetic force computation with hysteresis, J. Magn. Magn. Mater. 254-255 (2003) 237. https://doi.org/10.1016/S0304-8853(02)00777-1
[10] D. Bavastro, A. Canova, L. Giaccone,M. Manca,Numerical and experimental development of multilayer magnetic shields,Electric Power Systems Research 116 (2014) 374. https://doi.org/10.1016/j.epsr.2014.07.004
[11] L. Hasselgren, J. Luomi,Geometrical aspects of magnetic shielding at extremely low frequencies, IEEE Trans. Electromagn. Compat. 37 (1995) 409. https://doi.org/10.1109/15.406530
[12] O. Bottauscio, M. Chiampi, D. Chiarabaglio, F. Fiorillo, L. Rocchino, M. Zucca,Role of magnetic materials in power frequency shielding: numerical analysis and experiments, IEE Proceedings of Generation, Transmission and Distribution, 148 (2001) 104. https://doi.org/10.1049/ip-gtd:20010162
[13] L. Sandrolini,U. Reggiani, A. Ogunsola,Modelling the electrical properties of concrete for shielding effectiveness prediction,J. Phys. D: Appl. Phys.,40 (2007) 17. https://doi.org/10.1088/0022-3727/40/17/053
[14] A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova,AC and DC-shielding properties for the Ni80Fe20/Cu film structures,J. Magn. Magn. Mater. 443 (2017) 142. https://doi.org/10.1016/j.jmmm.2017.07.053
[15] S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner,Evolution of magnetic state in the La1−xCaxMnO3−γ (x=0.30, 0.50) manganites depending on the oxygen content,J. Sol. State Chem. 169 (2002) 85. https://doi.org/10.1016/S0022-4596(02)00028-2
[16] V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin,S.V. Trukhanov,Self-doped lanthanum manganites as a phase-separated system: Transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression,J. Appl. Phys. 104 (2008) 093909. https://doi.org/10.1063/1.3007993
[17] S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner,Comparative study of the magnetic and electrical properties of Pr1−xBaxMnO3−δ manganites depending on the preparation conditions,J. Magn. Magn. Mater. 237 (2001) 276. https://doi.org/10.1016/S0304-8853(01)00477-2
[18] A.V. Trukhanov, S.S. Grabchikov, A.N. Vasiliev, S.A. Sharko, N.I. Mukhurov, I.V. Gasenkova,Specific features of formation and growth mechanism of multilayered quasi-one-dimensional (Co-Ni-Fe)/Cu systems in pores of anodic alumina matrices,Crystallogr. Reports 59 (2014) 744. https://doi.org/10.1134/S1063774514050216
[19] S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak,Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85,JETP 111 (2010) 209. https://doi.org/10.1134/S106377611008008X
[20] E.M. Purcell, Electricity and Magnetism, McGraw Hill, (1985).
[21] S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak,Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0≤x≤0.50) manganites,J. Phys.: Condens. Matter, 15 (2003) 1783. https://doi.org/10.1088/0953-8984/15/10/324
[22] S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C. E. Botez, A. Adair,Magnetotransport properties and mechanism of the A-site ordering in the Nd–Ba optimal-doped manganites,J. Low Temp. Phys. 149 (2007) 185. https://doi.org/10.1007/s10909-007-9507-6
[23] S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak,Influence of oxygen vacancies on the magnetic and electrical properties of La1-xSrxMnO3-x/2manganites,Eur. Phys. J. B 42 (2004) 51. https://doi.org/10.1140/epjb/e2004-00357-8
[24] S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, H. Szymczak,Magnetic properties of La0.70Sr0.30MnO2.85anion-deficient manganite under hydrostatic pressure,JETP Lett. 83 (2006) 33. https://doi.org/10.1134/S0021364006010085
[25] A.O. Shiryaev, K.N. Rozanov, S.A. Vyzulin, A.L. Kevraletin, N.E. Syr’ev, E.S. Vyzulin, E. Lahderanta, S.A. Maklakov, A.B. Granovsky,Magnetic resonances and microwave permeability in thin Fe films on flexible polymer substrates,J. Magn. Magn. Mater. 461 (2018) 76. https://doi.org/10.1016/j.jmmm.2018.04.059
[26] L.D. Geng, Y.M. Jin,Controlling 180° transverse domain wall structure,J.Magn.Magn. Mater. 468 (2018) 246. https://doi.org/10.1016/j.jmmm.2018.08.021
[27] Y. Wang, Y. Wen, P. Li,Analytical and experimental study of the improved magnetic field sensitivity for nanocrystalline soft magnetic alloy and coil laminate with different layers,J.Magn.Magn. Mater. 474 (2019) 36. https://doi.org/10.1016/j.jmmm.2018.10.144
[28] S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and dipole moments in indium doped barium hexaferrites, J. Magn. Magn. Mater. 457 (2018) 83. https://doi.org/10.1016/j.jmmm.2018.02.078
[29] V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Investigation of the crystal and magnetic structures of BaFe12-xAlxO19 solid solutions (x = 0.1-1.2),Crystallogr. Rep.60 (2015) 629. https://doi.org/10.1134/S1063774515030220
[30] S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov,V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Yu. Matzui,D.A. Vinnik, D.V. Karpinsky, Effect of gallium doping on electromagnetic properties of barium hexaferrite, J. Phys. Chem. Sol.111 (2017) 142. https://doi.org/10.1016/j.jpcs.2017.07.014
[31] V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Study of the crystalline and magnetic structures of BaFe11.4Al0.6O19 in a wide temperature range,J. Surf. Investig. 9 (2015) 17. https://doi.org/10.1134/S1027451015010176
[32] A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites, Ceram. Int. 43 (2017) 12822. https://doi.org/10.1016/j.ceramint.2017.06.172
[33] I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, Magnetic properties of anion deficit manganites Ln0.55Ba0.45MnO3-γ (Ln=La, Nd, Sm, Gd, γ⩽0.37), J. Magn. Magn. Mater. 208 (2000) 217. https://doi.org/10.1016/S0304-8853(99)00529-6