Numerical Analysis of a Pneumatic Cushion Operation Safety, including the Airflow Conditions

Numerical Analysis of a Pneumatic Cushion Operation Safety, including the Airflow Conditions

FILO Grzegorz, LEMPA Paweł

download PDF

Abstract. This work concerns studying the characteristics of a pneumatic cushion in a system for moving heavy loads. Particular emphasis has been placed on the airflow parameters through the main supply nozzle, including the average flow velocity. Critical flow at the speed of sound can occur under certain circumstances. In the subsequent steps, a mathematical model of a pneumatic cushion was formulated, next, a simulation model was built in the Matlab/Simulink system, and then numerical simulations were carried out. As a result, it was estimated whether there is a flow with a safe, appropriately low speed in a given range of load and supply pressure.

Keywords
Pneumatic Cushion, Heavy Load Movement, Air Velocity, Critical Air Flow, Numerical Modelling, Matlab, Simulink

Published online 9/1/2023, 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: FILO Grzegorz, LEMPA Paweł, Numerical Analysis of a Pneumatic Cushion Operation Safety, including the Airflow Conditions, Materials Research Proceedings, Vol. 34, pp 237-245, 2023

DOI: https://doi.org/10.21741/9781644902691-28

The article was published as article 28 of the book Quality Production Improvement and System Safety

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] E. Lisowski, G. Filo. Automated heavy load lifting and moving system using pneumatic cushions, Autom. Constr. 50 (2015) 91-101. https://doi.org/10.1016/j.autcon.2014.12.004.
[2] E. Lisowski, D. Kwiatkowski. Determination of basic parameters of pneumatic transport platform system with pneumatic bags, Przegląd Mechaniczny 12(2) (2012) 45-48.
[3] K. Kaya, O. Özcan. A numerical investigation on aerodynamic characteristics of an air-cushion vehicle. J. Wind Eng. Ind. Aerodyn. 120 (2013) 70-80. https://doi.org/10.1016/j.jweia.2013.06.012.
[4] E. Lisowski, D. Kwiatkowski. Nonlinear static analysis of air cushion in SolidWorks Simulation 2016. Technical Transactions 115 (2018) 211-218. https://doi.org/10.4467/2353737XCT.18.030.8003
[5] J. Wołkow, R. Dindorf. Teoria i obliczenia układów pneumatycznych. Wydawnictwo Politechniki Krakowskiej, Kraków, 1994.
[6] W. Szejnach. Napęd i sterowanie pneumatyczne. WNT, Warszawa, 2003. ISBN 8320429188
[7] D.N. Dihovicni, M. Medenica. Simulation, Analyze and Program Support for Pneumatic Cylinder System. Proc. WCE 2009 World Cong. Engin., Vol I, 149-152. ISBN: 9789881701251
[8] J.-H. Moon, B.-G. Lee. Modeling and sensitivity analysis of a pneumatic vibration isolation system with two air chambers. Mechanism and Machine Theory 45 (2010) 1828-1850. https://doi.org/10.1016/j.mechmachtheory.2010.08.006.
[9] T. Bešter, M. Fajdiga, M. Nagode. Application of Constant Amplitude Dynamic Tests for Life Prediction of Air Springs at Various Control Parameters. Strojniški Vestnik/Journal of Mechanical Engineering 60 (2014) 241-249. https://doi.org/10.5545/sv-jme.2013.1348
[10] E. Lisowski, G. Filo. Pressure control in air cushions of the mobile platform. Journal of KONES Powertrain and Transport 18 (2011) 261-270.
[11] A. Messina, N. Giannoccaro, A. Gentile. Experimenting and modeling the dynamics of pneumatic actuators controlled by the pulse width modulation (PWM) technique. Mechatronics 15 (2005) 859-881. https://doi.org/10.1016/j.mechatronics.2005.01.003
[12] R. Dindorf. Estimating Potential Energy Savings in Compressed Air Systems. Procedia Engineering 39 (2012) 204-211. https://doi.org/10.1016/j.proeng.2012.07.026
[13] E. Richer, Y. Hurmuzlu. A high performance pneumatic force actuator system :part 1 – nonlinear mathematical model. J. Dyn. Syst. Meas. Control 122 (2000) 416-425. https://doi.org/10.1115/1.1286336
[14] G. Barucca et al. The potential of Λ and Ξ- studies with PANDA at FAIR, Europ. Phys. J. A 57 (2021) art.154 https://doi.org/10.1140/epja/s10050-021-00386-y
[15] M. Domagala et al. CFD Estimation of a Resistance Coefficient for an Egg-Shaped Geometric Dome, Appl. Sci. 12 (2022) art.10780. https://doi.org/10.3390/app122110780
[16] M. Domagala et al. The Influence of Oil Contamination on Flow Control Valve Operation, Mater. Res. Proc. 24 (2022) 1-8. https://doi.org/10.21741/9781644902059-1
[17] J. Fabiś-Domagała et al. Instruments of identification of hydraulic components potential failures, MATEC Web of Conf. 183 (2018) art.03008. https://doi.org/10.1051/matecconf/201818303008
[18] K. Knop et al. Evaluating and Improving the Effectiveness of Visual Inspection of Products from the Automotive Industry, Lecture Notes in Mechanical Engineering (2019) 231-243. https://doi.org/10.1007/978-3-030-17269-5_17
[19] J. Fabis-Domagala et al. A concept of risk prioritization in FMEA analysis for fluid power systems, Energies 14 (2021) art. 6482. https://doi.org/10.3390/en14206482
[20] R. Ulewicz, F. Nový. Quality management systems in special processes, Transp. Res. Procedia 40 (2019) 113-118. https://doi.org/10.1016/j.trpro.2019.07.019
[21] D. Siwiec et al. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Materials Research Proceedings 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
[22] K. Czerwinska et al. Improving quality control of siluminial castings used in the automotive industry, METAL 2020 29th Int. Conf. Metall. Mater. (2020) 1382-1387. https://doi.org/10.37904/metal.2020.3661
[23] S. Marković et al. Exploitation characteristics of teeth flanks of gears regenerated by three hard-facing procedures, Materials 14 (20210 art. 4203. https://doi.org/10.3390/ma14154203
[24] M. Krynke et al. Maintenance management of large-size rolling bearings in heavy-duty machinery, Acta Montan. Slovaca 27 (2022) 327-341. https://doi.org/10.46544/AMS.v27i2.04
[25] P. Regulski, K.F. Abramek. The application of neural networks for the life-cycle analysis of road and rail rolling stock during the operational phase, Technical Transactions 119 (2022) art. e2022002. https://doi.org/10.37705/TechTrans/e2022002
[26] M. Patek et al. Non-destructive testing of split sleeve welds by the ultrasonic TOFD method, Manuf. Technol. 14 (2014) 403-407. https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/3/403
[27] N. Radek, J. Pietraszek, A. Goroshko. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conf. Proc. 2017 (2018) art.20025. https://doi.org/10.1063/1.5056288″
[28] N. Radek et al. Properties of Steel Welded with CO2 Laser, Lecture Notes in Mechanical Engineering (2020) 571-580. https://doi.org/10.1007/978-3-030-33146-7_65
[29] M. Ulewicz et al. Ion flotation of zinc(II) and cadmium(II) in the presence of side-armed diphosphaza-16-crown-6 ethers, Sep. Sci. Technol. 38 (2003) 633-645. https://doi.org/10.1081/SS-120016655
[30] M. Zenkiewicz, T. Zuk, J. Pietraszek, P. Rytlewski, K. Moraczewski, M. Stepczyńska. Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835
[31] T. Zuk et al. Modeling of electrostatic separation process for some polymer mixtures, Polymers 61 (2016) 519-527. https://doi.org/10.14314/polimery.2016.519
[32] P. Szataniak, F. Novy, R. Ulewicz. HSLA steels – Comparison of cutting techniques, METAL 2014 – 23rd Int. Conf. Metallurgy and Materials (2014), Ostrava, Tanger, 778-783.
[33] D. Klimecka-Tatar, M. Ingaldi. Assessment of the technological position of a selected enterprise in the metallurgical industry, Mater. Res. Proc. 17 (2020) 72-78. https://doi.org/10.21741/9781644901038-11
[34] P. Jonšta et al. The effect of rare earth metals alloying on the internal quality of industrially produced heavy steel forgings, Materials 14 (2021) art.5160. https://doi.org/10.3390/ma14185160
[35] W. Zórawski et al. Plasma-sprayed composite coatings with reduced friction coefficient, Surf. Coat. Technol. 202 (2008) 4578-4582. https://doi.org/10.1016/j.surfcoat.2008.04.026
[36] N. Radek et al. Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176. https://doi.org/10.21741/9781644901038-26
[37] N. Radek et al. Influence of laser texturing on tribological properties of DLC coatings, Prod. Eng. Arch. 27 (2021) 119-123. https://doi.org/10.30657/pea.2021.27.15
[38] N. Radek et al. Operational properties of DLC coatings and their potential application, METAL 2022 31st Int. Conf. Metall. Mater. (2022) 531-536. https://doi.org/10.37904/metal.2022.4491
[39] N. Radek, J. Konstanty. Cermet ESD coatings modified by laser treatment, Arch. Metall. Mater. 57 (2012) 665-670. https://doi.org/10.2478/v10172-012-0071-y
[40] N. Radek et al. The effect of laser treatment on operational properties of ESD coatings, METAL 2021 30th Ann. Int. Conf. Metall. Mater. (2021) 876-882. https://doi.org/10.37904/metal.2021.4212
[41] N. Radek et al. The impact of laser processing on the performance properties of electro-spark coatings, 14th World Congress in Computational Mechanics and ECCOMAS Congress 1000 (2021) 1-10. https://doi.org/10.23967/wccm-eccomas.2020.336
[42] N. Radek et al. The WC-Co electrospark alloying coatings modified by laser treatment, Powder Metall. Met. Ceram. 47 (2008) 197-201. https://doi.org/10.1007/s11106-008-9005-7
[43] N. Radek et al. Laser Processing of WC-Co Coatings, Mater. Res. Proc. 24 (2022) 34-38. https:10.21741/9781644902059-6
[44] P. Kurp, H. Danielewski. Metal expansion joints manufacturing by a mechanically assisted laser forming hybrid method – concept, Technical Transactions 119 (2022) art. e2022008. https://doi.org/10.37705/TechTrans/e2022008
[45] J. Pietraszek et al. The principal component analysis of tribological tests of surface layers modified with IF-WS2 nanoparticles, Solid State Phenom. 235 (2015) 9-15. https://doi.org/10.4028/www.scientific.net/SSP.235.9
[46] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8. https://doi.org/10.4028/www.scientific.net/SSP.235.1
[47] R. Dwornicka, J. Pietraszek. The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48. https://doi.org/10.30657/pea.2018.20.09
[48] J. Pietraszek, N. Radek, A.V. Goroshko. Challenges for the DOE methodology related to the introduction of Industry 4.0. Prod. Eng. Arch. 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[49] B. Jasiewicz et al. Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment, Foot Ankle Surg. 27 (2021) 371-376. https://doi.org/10.1016/j.fas.2020.04.015
[50] J. Pietraszek. The modified sequential-binary approach for fuzzy operations on correlated assessments, LNAI 7894 (2013) 353-364. https://doi.org/10.1007/978-3-642-38658-9_32
[51] J. Pietraszek et al. Non-parametric assessment of the uncertainty in the analysis of the airfoil blade traces, METAL 2017 26th Int. Conf. Metall. Mater. (2017) 1412-1418. ISBN 978-8087294796
[52] A. Maszke, R. Dwornicka, R. Ulewicz. Problems in the implementation of the lean concept at a steel works – Case study, MATEC Web of Conf. 183 (2018) art.01014. https://doi.org/10.1051/matecconf/201818301014
[53] Ł.J. Orman. Enhancementof pool boiling heat transfer with pin-fin microstructures, J. Enhanc. Heat Transf. 23 (2016) 137-153. https://doi.org/10.1615/JEnhHeatTransf.2017019452
[54] A. Goroshko et al. Construction and practical application of hybrid statistically-determined models of multistage mechanical systems, Mechanika 20 (2014) 489-493. https://doi.org/10.5755/j01.mech.20.5.8221
[55] R. Ulewicz, M. Mazur. Economic aspects of robotization of production processes by example of a car semi-trailers manufacturer, Manuf. Technol. 19 (2019) 1054-1059. https://doi.org/10.21062/ujep/408.2019/a/1213-2489/MT/19/6/1054
[56] I. Drach et al. Design Principles of Horizontal Drum Machines with Low Vibration, Adv. Sci. Technol. Res. J. 15 (2021) 258-268. https://doi.org/10.12913/22998624/136441
[57] N. Radek, R. Dwornicka. Fire properties of intumescent coating systems for the rolling stock, Commun. – Sci. Lett. Univ. Zilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96
[58] W. Przybył et al. Virtual Methods of Testing Automatically Generated Camouflage Patterns Created Using Cellular Automata, Mater. Res. Proc. 24 (2022) 66-74. https://doi.org/10.21741/9781644902059-11
[59] N. Radek et al. Operational tests of coating systems in military technology applications, Eksploat. i Niezawodn. 25 (2023) art.12. https://doi.org/10.17531/ein.2023.1.12
[60] W. Przybył et al. Microwave absorption properties of carbonyl iron-based paint coatings for military applications, Def. Technol. 22 (2023) 1-9. https://doi.org/10.1016/j.dt.2022.06.013