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Abstract. This work concerns studying the characteristics of a pneumatic cushion in a system for 
moving heavy loads. Particular emphasis has been placed on the airflow parameters through the 
main supply nozzle, including the average flow velocity. Critical flow at the speed of sound can 
occur under certain circumstances. In the subsequent steps, a mathematical model of a pneumatic 
cushion was formulated, next, a simulation model was built in the Matlab/Simulink system, and 
then numerical simulations were carried out. As a result, it was estimated whether there is a flow 
with a safe, appropriately low speed in a given range of load and supply pressure. 
Introduction 
The indoor transport of heavy loads is a common problem in many industrial companies. The 
movement must be carried out quickly and efficiently. Various transportation devices, such as 
cranes, forklifts, or conveyors, can be used for this purpose. Sometimes a beneficial alternative 
may be using transport platforms on pneumatic cushions [1, 2]. They are particularly convenient 
under the safety requirements regarding the inability to use combustion engines and electrical 
devices. The simple and compact design allows the cushions to be easily inserted under bulky 
loads or devices, even heavy ones or of enormous dimensions. The handy feature is their small 
height of approximately 30 – 40 mm. However, using air cushion systems requires specific 
requirements to be met. Firstly, access to an air supply system with a certain pressure and flow 
rate must be provided. In addition, the operating floor must be suitably smooth and level, including 
the inclination α ≤ 0.10 and the roughness Ra ≤ 12.5 µm [3, 4]. When the air supply is turned on, a 
thin film is formed between the lower plane of the cushion and the ground. The film is created by 
the air radially flowing out of the chamber located in the central part. It reduces the friction 
coefficient between the cushion and the ground to approximately µ = 0.001.  

In the standard design of a pneumatic cushion [2, 5, 6], the air flows through a nozzle located 
centrally in the cushion axis. An important issue is ensuring proper outflow uniformity and 
estimating the required parameters of the air supply system. The phenomena accompanying the 
flow of gases are complex; therefore, they are the subject of research in many research centres. 
The issue of the work includes modelling and numerical analyses of elements and systems such as 
pneumatic cylinders [7], pneumatic vibration isolation systems with multiple air chambers [8] or 
air springs [9]. Another crucial issue is the appropriate control of the airflow rate. The 
manufacturers usually provide manual control systems. Nevertheless, the possibility of using 
automatic controllers with advanced algorithms, such as fuzzy logic [10] or pulse width 
modulation (PWM) technique [11], is also being investigated. The aim of the research is often a 
reduction in energy consumption [12] or an increase in the efficiency of the system [13].  

This paper deals with the issue of ensuring the safety of a pneumatic cushion operation by 
analysing the speed of airflow through the supply nozzle. The built model and numerical 
simulations carried out in the Matlab/Simulink system were aimed at estimating whether, given 



Quality Production Improvement and System Safety: QPI 16 - CZOTO 10 Materials Research Forum LLC 
Materials Research Proceedings 34 (2023) 237-245  https://doi.org/10.21741/9781644902691-28 
 

 
238 

the power supply parameters and load values, there would appear conditions for the formation of 
a critical flow with the speed of sound. 

Reliability and safety of pneumatic devices are of paramount importance as potential failures 
can pose a threat to the health and lives of workers, especially in high-pressure conditions [14-16]. 
Therefore, it is necessary to develop scenarios for potential failures [17-19], prevent them, and 
mitigate their consequences when they occur. This places a requirement on the devices and their 
individual working components to exhibit high-quality characteristics [20-22]. 

The main risk factors for failures are equipment wear [23-25], failures of structural joints, 
including welded joints [26-28], and unwanted gas and liquids ingress [29-31]. Preventing failures 
requires the use of materials with desired technological and functional properties [32-34], and in 
specific cases, complementing them with coatings that modify their characteristics [35], including 
coatings with special functional properties [36-38] and those that alter mechanical properties [39-
41]. Additionally, the morphology of the surface layer can be modified by changing frictional 
conditions [42-44]. The complexity of methods and the multifactorial nature of processes 
necessitate the application of dimensionality reduction techniques [45,46] and process 
optimization methods [47-49], including nonparametric techniques [50,51]. Ultimately, in 
conjunction with FMEA scenarios, this enables a reduction in the required resources [52]. 

In addition to the primary benefits of increased reliability and safety, it also leads to lower 
energy consumption [53], thereby increasing the applicability of pneumatic cushion transporters, 
both as standalone systems and as part of larger devices [54-56], posing competition to typical 
wheeled or conveyor-based transportation [57]. The military has long recognized the advantages 
of such transportation, especially in the case of air-cushion landing crafts [58-60]. 
Working Principle of a Pneumatic Cushion 
The analysed pneumatic cushion is based on a DELU 4LTM-200-1 type (fig. 1). It consists of 
a rigid aluminium plate (2) with four landing pads (3). In the lower part, there are rubber bellows 
(4) of a shape similar to a torus. The air flows through the inlet port (1) and the nozzle (5) to the 
central chamber of the V1 volume. The cushion has the following nominal operational parameters: 
input pressure p0 = 2.4 bar, and the air consumption Q0 = 180 dm3/min.  

 

 
Fig. 1 Pneumatic cushion: (a) real cushion, b) cross-section through the 3D model;  
1 – inlet port, 2 – aluminium plate, 3 – landing pad, 4 – rubber bellows, 5 – nozzle 

After opening the airflow, the p1 pressure appears at the inlet. Air flows into the central chamber 
of V1 volume through the d1 nozzle and simultaneously into the bellows through the d2 nozzle. 
After some time, the bellows fill up, and the flow occurs through the d1 nozzle. When the p1 
pressure reaches a sufficiently high value, the gap between the lower surface of the bellows and 
the ground is formed, and the outflow to the atmosphere begins. The pressure difference 
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Δp = p0 – p1 is established, which determines the Q1 flow rate through the nozzle and, thus, the 
average velocity of the air stream.  

The mass stream )(1 tm  of air flowing into the central chamber through the d1 nozzle can be 
determined by taking into account the critical velocity of the flow [5, 6]. The air velocity depends 
on the pressure ratio 01 / pp . In the case of assuming an adiabatic change during the flow (omission 
heat exchange with the environment), the threshold value of this coefficient is constant and equal 
to 53.00 =β . If the value of the pressure ratio 001 / β≤pp , which means 01 53.0 pp ⋅≤ , the 
supercritical flow occurs at the speed of sound, otherwise the flow velocity is lower. Hence, the 
equation of the air inflow to the V1 volume can be written as follows: 
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In the case of supercritical flow, the coefficient ψ has a constant value of 684.0=critψ . Hence, 
the equation (1) is simplified to the following form: 

0

0
2

11 )(7594.0)(
TR

tpd
dt

tdm
⋅

⋅
⋅= . (3) 

The volumetric flow rate can be determined by dividing the mass flow by the air density: 
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and thus the average velocity of the air stream is: 
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The mathematical model also includes equations related to the V2 chamber flow, bottom gap 
formation, payload, equation of motion in the vertical direction, etc. The complete model the one 
can find in the publication [1].  
Simulink Model and Numerical Analysis 
The created simulation model in the form of a Simulink block diagram is shown in fig. 2. It 
includes subsystems for an input step function U_in, a relief valve INLET_VALVE, two nozzles 
d1_nozzle, d2_nozzle and two chambers V1_chamber, V2_chamber, respectively. Signals are related 
to p_0, p_1, p_2 pressures, dm1/dt, dm2/dt flow rates, z_f, z_2 heights of the air gap and the bellows, 
V_2 chamber volume and v_1_avg flow velocity through the nozzle. The results are stored in a file 
using a Results_to_file block. 
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The test plan assumed checking the flow velocity through the nozzle d1 for the load values in 
the 2500,1500,500,100=loadF  N and the supply pressure 4.2,8.1,2.10 =p  bar. The first step 
determined the velocity for different load values at a fixed supply pressure. Next, simulations were 
carried out at different pressure values for the fixed load force. Fig. 3 and fig. 4 show the results 
obtained in the first and the second step, respectively. 

 

 
Fig. 2 Block diagram of a Simulink model 

 

 
 

Fig. 3 Air velocity for fixed load force value: a) Fload = 100 N, b) Fload = 1500 N;  
1 – p0 = 1.2 bar, 2 – p0 = 1.8 bar, 3 – p0 = 2.4 bar 
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Fig. 4 Air velocity for fixed input pressure: a) p0 = 1.2 bar, b) p0 = 2.4 bar;  
1 – Fload = 100 N, 2 – Fload = 500 N, 3 – Fload = 1500 N, 4 – Fload = 2500 N 

 
Fig. 3 shows that the velocity value for Fload =100 N is in the range between 160 and 295 m/s, 

while for Fload = 1500 N, between 100 and 275 m/s, respectively. In the case of Fload =2500 N, the 
air film was formed only at the pressure p0 = 2.4 bar, and in this case, the velocity value 137 m/s 
was obtained. As arises from fig. 4, at a supply pressure of 1.2 bar, the velocity value ranges from 
100 to 160 m/s, and the maximum load force is 1500 N. When the supply pressure is 2.4 bar, the 
obtained air velocity varies from 140 to 295 m/s, respectively.  
Summary 
The article aimed to conduct a numerical analysis of the parameters of a pneumatic cushion 
intended for use in heavy load handling systems. In particular, it was checked whether the 
conditions of critical flow formation with the speed of sound could occur in the air supply nozzle. 
The simulations in Simulink showed that the highest air flow velocity occurs when the maximum 
supply pressure is set at minimum load. However, the maximum flow velocity obtained is less than 
300 m/s. In practice, putting the full airflow at minimum payload can occur with manual pressure 
setting and may be prevented by applying an automatic control system. 
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