An Application of the Systematic Diagram in the Failure and Causes Analysis of a Vane Pump
FABIŚ-DOMAGAŁA Joanna, DOMAGAŁA Mariusz, PIETRASZEK Jacek
download PDFAbstract. Hydraulic systems are widely spread among drive and control systems. They can play a crucial role in many applications; therefore, identifying potential failures and their causes might be required. Quality improvement tools and methods can be used to achieve this goal. This research attempts to apply one of the recently developed tools, which is a systematic diagram, to recognize possible failures and their causes and finally to define preventive measures for a typical hydraulic vane pump. The analysis of potential pump failures and their causes identified oil contamination as the primary source of pump failure or malfunction. Consequently, proper maintenance was found to be the proper preventive measure.
Keywords
Hydraulic Systems, Drive and Control Systems, Potential Failures, Causes, Quality Improvement Tools, Systematic Diagram, Preventive Measures, Hydraulic Vane Pump, Oil Contamination, Maintenance
Published online 9/1/2023, 9 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: FABIŚ-DOMAGAŁA Joanna, DOMAGAŁA Mariusz, PIETRASZEK Jacek, An Application of the Systematic Diagram in the Failure and Causes Analysis of a Vane Pump, Materials Research Proceedings, Vol. 34, pp 207-215, 2023
DOI: https://doi.org/10.21741/9781644902691-25
The article was published as article 25 of the book Quality Production Improvement and System Safety
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J. Fabis-Domagala et al. A Matrix FMEA Analysis of Variable Delivery Vane Pumps, Energies 14 (2021) art.1741. https://doi.org/10.3390/en14061741
[2] J. Fabis-Domagala et al. A Concept of Risk Prioritization in FMEA Analysis for Fluid Power Systems, Energies 14 (2021) art.6482. https://doi.org/10.3390/en14206482
[3] J. Fabis-Domagala, M. Domagala. A Concept of Risk Prioritization in FMEA of Fluid Power Components, Energies 15 (2022) art.6180. https://doi.org/10.3390/en15176180
[4] A. Hamrol, W. Mantura. Zarządzanie jakością. Teoria i praktyka, Wydawnictwo Naukowe PWN, 2004. ISBN 978-8301167752
[5] H. Gołaś, A. Mazur. Zasady, metody i techniki wykorzystywane w zarządzaniu jakością, Wydawnictwo Politechniki Poznańskiej, Poznań, 2010. ISBN 978-8371439087
[6] K. Knop et al. Evaluating and Improving the Effectiveness of Visual Inspection of Products from the Automotive Industry, Lecture Notes in Mechanical Engineering (2019) 231-243. https://doi.org/10.1007/978-3-030-17269-5_17
[7] G. Filo, P. Lempa. Analysis of Neural Network Structure for Implementation of the Prescriptive Maintenance Strategy, Mater. Res. Proc. 24 (2022) 273-280. https://doi.org/10.21741/9781644902059-40
[8] P. Lempa, G. Filo. Analysis of Neural Network Training Algorithms for Implementation of the Prescriptive Maintenance Strategy, Mater. Res. Proc. 24 (2022) 281-287. https://doi.org/10.21741/9781644902059-41
[9] A. Maszke, R. Dwornicka, R. Ulewicz. Problems in the implementation of the lean concept at a steel works – Case study, MATEC Web of Conf. 183 (2018) art.01014. https://doi.org/10.1051/matecconf/201818301014
[10] R. Ulewicz, M. Ulewicz. Problems in the Implementation of the Lean Concept in the Construction Industries, LNCE 47 (2020) 495-500. https://doi.org/10.1007/978-3-030-27011-7_63
[11] R. Ulewicz, M. Mazur. Economic aspects of robotization of production processes by example of a car semi-trailers manufacturer, Manufacturing Technology 19 (2019) 1054-1059. https://doi.org/10.21062/ujep/408.2019/a/1213-2489/MT/19/6/1054
[12] I. Drach et al. Design Principles of Horizontal Drum Machines with Low Vibration, Adv. Sci. Technol. Res. J. 15 (2021) 258-268. https://doi.org/10.12913/22998624/136441
[13] N. Radek, R. Dwornicka. Fire properties of intumescent coating systems for the rolling stock, Commun. – Sci. Lett. Univ. Zilina 22 (2020) 90-96. https://doi.org/10.26552/com.C.2020.4.90-96
[14] G. Barucca et al. The potential of Λ and Ξ- studies with PANDA at FAIR, Europ. Phys. J. A 57 (2021) art.154 https://doi.org/10.1140/epja/s10050-021-00386-y
[15] W. Przybył et al. Virtual Methods of Testing Automatically Generated Camouflage Patterns Created Using Cellular Automata, Mater. Res. Proc. 24 (2022) 66-74. https://doi.org/10.21741/9781644902059-11
[16] N. Radek et al. Operational tests of coating systems in military technology applications, Eksploat. i Niezawodn. 25 (2023) art.12. https://doi.org/10.17531/ein.2023.1.12
[17] W. Przybył et al. Microwave absorption properties of carbonyl iron-based paint coatings for military applications, Def. Technol. 22 (2023) 1-9. https://doi.org/10.1016/j.dt.2022.06.013
[18] A. Dudek, B. Lisiecka, R. Ulewicz. The effect of alloying method on the structure and properties of sintered stainless steel, Archives of Metallurgy and Materials 62 (2017) 281-287. https://doi.org/10.1515/amm-2017-0042
[19] R. Ulewicz et al. Structure and mechanical properties of fine-grained steels, Period. Polytech. Transp. Eng. 41 (2013) 111-115. https://doi.org/10.3311/PPtr.7110
[20] D. Klimecka-Tatar, M. Ingaldi. Assessment of the technological position of a selected enterprise in the metallurgical industry, Mater. Res. Proc. 17 (2020) 72-78. https://doi.org/10.21741/9781644901038-11
[21] D. Siwiec et al. Improving the process of achieving required microstructure and mechanical properties of 38mnvs6 steel, METAL 2020 29th Int. Conf. Metall. Mater. (2020) 591-596. https://doi.org/10.37904/metal.2020.3525
[22] N. Radek et al. The WC-Co electrospark alloying coatings modified by laser treatment, Powder Metall. Met. Ceram. 47 (2008) 197-201. https://doi.org/10.1007/s11106-008-9005-7
[23] P. Kurp et al. The influence of treatment parameters on the microstructure, properties and bend angle of laser formed construction bars, Arch. Metall. Mater. 61 (2016) 1151-1156. https://doi.org/10.1515/amm-2016-0192
[24] P. Kurp, H. Danielewski Metal expansion joints manufacturing by a mechanically assisted laser forming hybrid method – concept, Technical Transactions 119 (2022) art. e2022008. https://doi.org/10.37705/TechTrans/e2022008
[25] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, D. Klimecka-Tatar. Corrosion resistance depth profiles of nitrided layers on austenitic stainless steel produced at elevated temperatures, Arch. Metall. Mater. 54 (2009) 115-120.
[26] M. Scendo et al. Purine as an effective corrosion inhibitor for stainless steel in chloride acid solutions, Corr. Rev. 30 (2012) 33-45. https://doi.org/10.1515/CORRREV-2011-0039
[27] M. Scendo et al. Influence of laser treatment on the corrosive resistance of WC-Cu coating produced by electrospark deposition, Int. J. Electrochem. Sci. 8 (2013) 9264-9277.
[28] S. Marković et al. Exploitation characteristics of teeth flanks of gears regenerated by three hard-facing procedures, Materials 14 (20210 art. 4203. https://doi.org/10.3390/ma14154203
[29] M. Krynke et al. Maintenance management of large-size rolling bearings in heavy-duty machinery, Acta Montan. Slovaca 27 (2022) 327-341. https://doi.org/10.46544/AMS.v27i2.04
[30] P. Regulski, K.F. Abramek The application of neural networks for the life-cycle analysis of road and rail rolling stock during the operational phase, Technical Transactions 119 (2022) art. e2022002. https://doi.org/10.37705/TechTrans/e2022002
[31] M. Patek et al. Non-destructive testing of split sleeve welds by the ultrasonic TOFD method, Manuf. Technol. 14 (2014) 403-407. https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/3/403
[32] P. Jonšta et al. Hydrogen embrittlement of welded joint made of supermartensitic stainless steel in environment containing sulfane, Arch. Metall. Mater. 61 (2016) 709-711. https://doi.org/10.1515/amm-2016-0121
[33] I. Miletić, A. Ilić, R.R. Nikolić, R. Ulewicz, L. Ivanović, N. Sczygiol. Analysis of selected properties of welded joints of the HSLA Steels, Materials 13 (2020) art.1301. https://doi.org/10.3390/ma13061301
[34] S. Borkowski, R. Ulewicz, J. Selejdak, M. Konstanciak, D. Klimecka-Tatar. The use of 3×3 matrix to evaluation of ribbed wire manufacturing technology, METAL 2012 – 21st Int. Conf. Metall. Mater. (2012), Ostrava, Tanger 1722-1728.
[35] R. Ulewicz. Outsorcing quality control in the automotive industry, MATEC Web of Conf. 183 (2018) art.03001. https://doi.org/10.1051/matecconf/201818303001
[36] R. Ulewicz, F. Nový. Quality management systems in special processes, Transp. Res. Procedia 40 (2019) 113-118. https://doi.org/10.1016/j.trpro.2019.07.019
[37] D. Siwiec, R. Dwornicka, A. Pacana. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Mater. Res. Proc. 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
[38] A. Deja et al. Analysis and assessment of environmental threats in maritime transport, Transp. Res. Procedia 55 (2021) 1073-1080. https://doi.org/10.1016/j.trpro.2021.07.078
[39] A. Gadek-Moszczak, P. Matusiewicz. Polish stereology – A historical review, Image Analysis and Stereology 36 (2017) 207-221. https://doi.org/10.5566/ias.1808
[40] I. Jastrzębska, A. Piwowarczyk. Traditional vs. automated computer image analysis – A comparative assessment of use for analysis of digital SEM images of high-temperature ceramic material, Materials 16 (2023) art. 812. https://doi.org/10.3390/ma16020812
[41] S. Stryczek. Napęd hydrostatyczny T.1. WNT, Warszawa 1995. ISBN 978-8301189570
[42] Parker Hydraulic, Hydraulic Pumps & Motors Vane Troubleshooting Guide, Catalogue HY29-0022/UK.
[43] A. Pacana. Narzędzia zarządzania jakością, Wydawnictwo Politechnika Rzeszowska, 2022. ISBN 978-8379345601
[44] S. Wawak. Zarządzanie jakością. Podstawy, systemy i narzędzia, Wydawnictwo Helion, 2022. ISBN 83-73617876
[45] M. Ćwiklicki, H. Obora. Wprowadzenie do metod TQM, Wydawnictwo UEK, Kraków, 2011. ISBN 978-8372525277