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Abstract. Hydraulic systems are widely spread among drive and control systems. They can play 
a crucial role in many applications; therefore, identifying potential failures and their causes might 
be required. Quality improvement tools and methods can be used to achieve this goal. This research 
attempts to apply one of the recently developed tools, which is a systematic diagram, to recognize 
possible failures and their causes and finally to define preventive measures for a typical hydraulic 
vane pump. The analysis of potential pump failures and their causes identified oil contamination 
as the primary source of pump failure or malfunction. Consequently, proper maintenance was 
found to be the proper preventive measure.    
Introduction  
Hydraulic systems, due to their advantages, are one of the top-rated drive systems in various 
industries, from agriculture, heavy machinery, mining, oil, and gas to the aerospace industry. 
Components of hydraulic systems have complex electro-hydro-mechanical structures. The most 
substantial and complicated structures among them are hydraulic pumps. Their main task is to 
convert mechanical energy into pressure energy and provide the required fluid flow rate. There are 
several main types of hydraulic pumps, such as gear, screw, piston, or vane. Regardless of the type, 
they might be one of the most expensive components in the system, and their failure might be 
catastrophic for the whole system. Therefore, it is crucial to identify symptoms of potential failures 
to take appropriate measures at an early stage of their occurrence or even during system design. In 
order to identify possible failures during operation, various diagnostic systems can be used. In 
contrast, quality improvement methods find application before the system is implemented. The 
most popular methods are Failure Modes and Effect Analysis (FMEA) [1-3], Quality Function 
Deployment (QFD), or methods using experimental data in designing products and processes. The 
abovementioned methods can be supported by quality improvement tools at various stages of their 
implementation. Those tools are used for collecting and processing data related to various quality 
aspects. They are instruments for monitoring and diagnosing design, manufacturing, control, or 
assembly processes throughout the product life cycle. These tools allow collecting information to 
define Total Quality Management (TQM) actions. Among the quality control tools, we can find 
the classical quality improvements tools such as the Ishikawa diagram, Pareto analysis, or 
correlation diagram. The "new" quality improvement tools are relationship diagrams or 
systematics diagrams [4,5]. The application of those tools is more and more extensive, particularly 
in the automotive industry. This paper attempts to implement a systematic diagram to identify the 
causes of potential failures of a vane pump. 

Analogous methods for enhancing quality based on the development of potential failure 
scenarios are widely employed in the industry [6-8]. These methods allow for the optimization of 
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preventive measures, minimizing them to the necessary minimum in line with lean principles 
[9,10]. This approach is particularly critical in the production of highly responsible products, such 
as in the machinery [11,12], railway [13], hydraulic power [14], and military [15-17] sectors. 

Technological advancements play a significant role in improving reliability in these industries. 
This includes the selection of appropriate materials [18], their precise processing [19-21], and the 
shaping of desired functional characteristics in cooperating surface layers [22-24]. By 
implementing these techniques, several benefits are achieved. First, the corrosion resistance is 
significantly enhanced [25-27], leading to increased durability and longevity of the products. 
Second, the wear and tear rates during operation are reduced, resulting in prolonged lifespan and 
improved performance [28-30]. Lastly, the strength of welded joints is improved, ensuring 
structural integrity and safety [31-33]. 

An additional positive consequence of these improvements is the overall increase in product 
quality [34-37]. This has a direct impact on reducing the strain on the natural environment, 
contributing to sustainability efforts [38]. Moreover, these advancements inspire the application 
of image analysis methods for the identification and analysis of coating and surface layer 
characteristics [39,40]. By leveraging image analysis techniques, researchers and engineers can 
gain valuable insights into the performance and properties of surface coatings, facilitating further 
optimization and refinement of the manufacturing processes. 
Design and Functionality of a Vane Pump 
A vane pump is the positive displacement pump type. Its main features are high efficiency and 
reliability. An additional advantage is the low noise emission during operation and low operating 
costs. An example of the vane pump is presented in Fig.1. It has a relatively simple structure, 
where vanes are placed in a rotor socket and expanded to the stator during rotation, creating a 
pumping chamber [41]. Failure-free pump operation requires hydraulic oil to fulfill specific 
requirements for cleanliness, contamination level, and self-lubricating capability. The available 
research indicates that the cause of the majority of vane pump failures is improper operational 
conditions [42]. The knowledge about the causes of pump failures allows for defining preventive 
or/and corrective measures. 

 

 
 
Fig.1. Hydraulic vane pump (UPLV 32 type), where: 1 – pump body, 2 – cover, 3 – shaft,  

4 – vanes, 5 – rotor, 6 – stator, 7,8 – plates, 9 – sleeve, 10 – plate sealings. 
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Systematic Diagram  
The Flow/Systematic diagram is one of the decent quality improvement tools known as a tree 
diagram or decision tree. It is most often used during the planning and managing processes in the 
organization to anticipate the consequences of decisions taken. It can also be used during concept 
development and the design of new products to identify possible failures or improvement actions 
for identified problems. It has a graphical form for presenting the ordering activities necessary for 
a given process or factors influencing the occurrence of a given failure. The diagram systematizes 
the causes of the problem in a chronological and logical order following the principle "from 
general to detail". 

Furthermore, it can be used to arrange information in a relationship or dependency charts 
[43,44]. The main idea of the systematic diagram refers to the tree diagram, thanks to which it is 
possible to use specific techniques helpful in its preparation. One of these techniques is a 
systematic functional chart based on the FAST technique [45]. The procedure for developing a 
systematic diagram includes five steps: 
– stage 1 – level 0: defining the problem/effect (marked 000), 
– stage 2 – level 1: determining the main categories of causes for a given problem/effect 
(designation I00, II00), 
– stage 3 – level 2: determination of causes for a given effect (designation I10, II10) 
– stage 4 – level 3…n: determination of sub-causes for a given cause (designation I1a, II1a) 
– stage 5 – selection the cause that has the greatest impact on the problem/effect. 

 
In the above-presented procedure, the systematic diagram logically presents cause and effect 

relationships for the problem/effect under consideration. Fig. 2 shows an example of a systematic 
diagram. The diagram is constructed from the general (left) to the detail (right). 

The result of the analysis of the systematic diagram should be the determination of the leading 
cause category and the main cause that has the highest impact on the effect/problem. In the next 
step, the appropriate corrective measures should be specified so that the identified problem is 
resolved and there are no severe consequences due to its negligence. 
 

 
Fig.2. A graphical representation of the systematic diagram 

 

Systematic Diagram in Failure Analysis of a Vane Pump  
The operation of a vane pump is based on converting mechanical energy into the pressure energy 
of the working fluid. The failures that can occur during operation might cause pump malfunction 
or inability to operate. Some of those failures can be fixed directly onsite. The others may require 
sophisticated equipment or even component replacement. Therefore, the identification of the 
possible failure causes is a principal issue. This can be realized by a systematic diagram which is 
presented in Fig. 3. The diagram includes three main categories of failure causes: operation, 
design, and assembly/repair. For each of them, the causes that can be a potential source of the 
failure are specified. Consequently, the three sub-causes were assigned for each of them. 
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According to the literature review [42], the highest probability of failure of vane pumps arises 
during maintenance errors (I), which degrades the working fluid (I1a-d). Maintaining an 
appropriate quality of hydraulic oil is the primary cause affecting the proper operation of the vane 
pump and the entire hydraulic system. A change in the color of the working liquid indicates its 
property degradation or the initiation of contamination. Therefore, in the second step of the 
analysis, the systematic diagram was used to identify possible causes of failures of the vane pump 
during its operation, as presented in Fig.4.  

 

Fig.3. A general systematic diagram of causes of vane pump failures 
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Fig.4. A detailed systematic diagram for identification of vane pump failures 
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Fig.5. The systematic diagram for effects of solid particles contamination 
The systematic diagram shows that maintenance errors are the sources of the vane pump 

failures. The most common errors are ineffective deaeration at the pump start-up, starting an 
operation without oil, or using oil with too high viscosity. Another related problem is cavitation, 
which may cause erosion and surface degradation. A widespread oil failure is the oil aeration 
caused by insufficient seals in the suction line or pump shaft. Dissolved air in oil affects oil 
properties, changes compressibility, disturbs the cooling and lubricating process, and, in the worst 
scenario, may cause pump components to be seized. The other typical oil contaminant is water 
which converts working fluid into a mixture with lower lubrication capabilities and viscosity. 
Under high pressure, such a mixture forms foam, significantly decreasing oil bulk modulus and 
disrupting proper vane operation. At this analysis stage, two main categories of causes were 
distinguished: I. mechanical and II. physical, hydraulic and chemical. Then, within these two 
categories, a total of 10 causes and 20 sub-causes were identified. The leading cause of the failure 
of the vane pump appeared to be contamination of oil with solid particles. It may cause cavitation 
corrosion (erosion), scratches on the surfaces of the pump components, and fluctuation in the pump 
operation. Oil contaminated with solid particles may also affect the entire hydraulic system and 
lead to faulty operation. In the last step of the pump failure analysis, the systematics diagram 
presented in Fig. 5 was created on which the consequences of solid particle contamination were 
presented [42]. 

A contaminated oil with solid particles and water may cause noisy operation, destruction of 
components, or excessive wear. Measures presented in Table 1 can be undertaken to prevent the 
failures caused by contaminated fluid. 
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Table 1. Preventing measures for contaminated oil 
Cause Symptom  Measures 
 
Contaminated 
fluid 

Noisy operation Install an adequate filter or replace 
the oil more often. 
 
Determine source  
of contaminants and correct 

Breakage  of parts inside the pump housing 
excessive wear 

Conclusions 
The implementation of a systematic diagram for vane pumps failure analysis allowed for 
identifying the causes of the most common failures. Regardless of the durability of pump 
components, it is very sensitive to the quality of working fluid. Presented in this research analysis 
indicates that oil contaminants are the significant sources of pump malfunction. They degrade oil 
properties, which may lead to pump malfunction or even inability to operate due to component 
destruction. Therefore, adequate maintenance procedures are key to the failure-free operation. 
Obtained results agree with other research, which defines oil as main source of failure for fluid 
power systems.  
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