Consolidation of AZ31 magnesium chips using equal channel angular pressing
Majid Al-Maharbi, Almundher Al-Namani
download PDFAbstract. Equal channel angular pressing (ECAP) as a severe plastic deformation (SPD) technique was employed for consolidation of AZ31 magnesium chips. The chips were consolidated at a temperature of 300 Β°C following ECAP route A up to two passes. The optical and scanning electron micrographs reveal that consolidation have taken place and the quality of consolidation improves with number of ECAP passes and hence the total imposed strain. The Vickers hardness of the processed samples increased from 41 of the as cast used to generate the chips to 47.7 ad 58.5 of consolidated samples after one and two passes respectively. The consolidation of chips was accompanied by the breakage and dispersion of the oxide layer developed on the surface of the chips during and after machining.
Keywords
Magnesium Alloy, AZ31, Consolidation, Solid-State Recycling, Equal Channel Angular Pressing, Severe Plastic Deformation
Published online , 7 pages
Copyright Β© 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: Majid Al-Maharbi, Almundher Al-Namani, Consolidation of AZ31 magnesium chips using equal channel angular pressing, Materials Research Proceedings, Vol. 32, pp 213-219, 2023
DOI: https://doi.org/10.21741/9781644902615-24
The article was published as article 24 of the book Superplasticity in Advanced Materials
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] M. Mabuchi, K. Kubota, K. Higashi, New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars, Mater. Trans. JIM. 36 (1995) 1249β1254. https://doi.org/10.2320/matertrans1989.36.1249
[2] Y. Chino, M. Kobata, K. Shimojima, H. Hosokawa, Y. Yamada, H. Iwasaki, M. Mabuchi, Blow Forming of Mg Alloy Recycled by Solid-State Recycling, Mater. Trans. 45 (2004) 361β364. https://doi.org/10.2320/matertrans.45.361
[3] Y. Chino, T. Hoshika, M. Mabuchi, Enhanced corrosion properties of pure Mg and AZ31 Mg alloy recycled by solid-state process, Mater. Sci. Eng. A. 435β436 (2006) 275β281. https://doi.org/10.1016/j.msea.2006.07.019
[4] M. Hu, Z. Ji, X. Chen, Z. Zhang, Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling, Mater. Charact. 59 (2008) 385β389. https://doi.org/10.1016/j.matchar.2007.02.002
[5] S. Wu, Z. Ji, T. Zhang, Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips, J. Mater. Process. Technol. 209 (2009) 5319β5324. https://doi.org/10.1016/j.jmatprotec.2009.04.002
[6] M.L. Hu, Z.S. Ji, X.Y. Chen, Q.D. Wang, W.J. Ding, Solid-state recycling of AZ91D magnesium alloy chips, Trans. Nonferrous Met. Soc. China (English Ed. 22 (2012) s68βs73. https://doi.org/10.1016/S1003-6326(12)61685-9
[7] S. Wu, Z. Ji, M. Hu, Z. Huang, C. Tian, M. Wu, Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Prepared by Solid State Recycling, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 47 (2018) 736β741. https://doi.org/10.1016/s1875-5372(18)30101-2
[8] S. yan Wu, Z. sheng Ji, S. fan Rong, M. liang Hu, Microstructure and mechanical properties of AZ31B magnesium alloy prepared by solid-state recycling process from chips, Trans. Nonferrous Met. Soc. China (English Ed. 20 (2010) 783β788. https://doi.org/10.1016/S1003-6326(09)60214-4.
[9] B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resour. Conserv. Recycl. 125 (2017) 37β47. https://doi.org/10.1016/j.resconrec.2017.06.004
[10] T. Peng, Q.D. Wang, Y.K. Han, J. Zheng, W. Guo, Consolidation behavior of Mg-10Gd-2Y-0.5Zr chips during solid-state recycling, J. Alloys Compd. 503 (2010) 253β259. https://doi.org/10.1016/j.jallcom.2010.05.011
[11] D. Baffari, G. Buffa, L. Fratini, A numerical model for Wire integrity prediction in Friction Stir Extrusion of magnesium alloys, J. Mater. Process. Technol. 247 (2017) 1β10. https://doi.org/10.1016/j.jmatprotec.2017.04.007
[12] S. WU, Z. JI, S. RONG, M. HU, Microstructure and mechanical properties of AZ31B magnesium alloy prepared by solid-state recycling process from chips, Trans. Nonferrous Met. Soc. China. (2010). https://doi.org/10.1016/S1003-6326(09)60214-4
[13] T. Ying, M.Y. Zheng, X.S. Hu, K. Wu, Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP, Trans. Nonferrous Met. Soc. China (English Ed. 20 (2010). https://doi.org/10.1016/S1003-6326(10)60547-X
[14] M. Moss, R. Lapovok, C.J. Bettles, The equal channel angular pressing of magnesium and magnesium alloy powders, Jom. 59 (2007) 54β57. https://doi.org/10.1007/s11837-007-0105-5
[15] D. Paraskevas, S. Dadbakhsh, J. Vleugels, K. Vanmeensel, W. Dewulf, J.R. Duflou, Solid state recycling of pure Mg and AZ31 Mg machining chips via spark plasma sintering, Mater. Des. 109 (2016) 520β529. https://doi.org/10.1016/j.matdes.2016.07.082
[16] D. Baffari, G. Buffa, D. Campanella, L. Fratini, A.P. Reynolds, Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation, J. Manuf. Process. 29 (2017) 41β49. https://doi.org/10.1016/j.jmapro.2017.07.010
[17] Y. Chino, T. Hoshika, J.S. Lee, M. Mabuchi, Mechanical properties of AZ31 Mg alloy recycled by severe deformation, J. Mater. Res. 21 (2006) 754β760. https://doi.org/10.1557/jmr.2006.0090
[18] Q. Shi, Y.Y. Tse, R.L. Higginson, Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti-6Al-4V from machining chips produced by equal channel angular pressing, Mater. Sci. Eng. A. 651 (2016) 248β258. https://doi.org/10.1016/j.msea.2015.11.002
[19] P. Luo, H. Xie, M. Paladugu, S. Palanisamy, M.S. Dargusch, K. Xia, Recycling of titanium machining chips by severe plastic deformation consolidation, J. Mater. Sci. 45 (2010) 4606β4612. https://doi.org/10.1007/s10853-010-4443-2
[20] P. Luo, D.T. McDonald, S.M. Zhu, S. Palanisamy, M.S. Dargusch, K. Xia, Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction, Mater. Sci. Eng. A. 538 (2012) 252β258. https://doi.org/10.1016/j.msea.2012.01.039
[21] D.T. McDonald, P. Luo, S. Palanisamy, M.S. Dargusch, K. Xia, Ti-6Al-4V recycled from machining chips by equal channel angular pressing, Key Eng. Mater. 520 (2012) 295β300. https://doi.org/10.4028/www.scientific.net/KEM.520.295
[22] S. Wu, Z. Ji, T. Zhang, Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips, J. Mater. Process. Technol. 209 (2009) 5319β5324. https://doi.org/10.1016/j.jmatprotec.2009.04.002
[23] L. Wen, Z. Ji, X. Li, Effect of extrusion ratio on microstructure and mechanical properties of Mg β Nd β Zn β Zr alloys prepared by a solid recycling process, 9 (2008) 2β7. https://doi.org/10.1016/j.matchar.2008.03.009
[24] Z. Zu-de, C. Qiang, Y. Lin, S.H.U. Da-yu, Z. Zhi-xiang, Microstructure and mechanical properties of Mg-Zn-Y-Zr alloy prepared by solid state recycling, Trans. Nonferrous Met. Soc. China. 21 (2010) 265β271. https://doi.org/10.1016/S1003-6326(11)60708-5
[25] T. Peng, Q.D. Wang, J.B. Lin, Microstructure and mechanical properties of Mgβ10Gdβ2Yβ0.5Zr alloy recycled by cyclic extrusion compression, Mater. Sci. Eng. A. 516 (2009) 23β30. https://doi.org/10.1016/j.msea.2009.04.024.