Experimental investigations on the thermo-mechanical properties of carbon-basalt-aramid/epoxy and glass-basalt-aramid/epoxy hybrid interply composites under different aging environments

Experimental investigations on the thermo-mechanical properties of carbon-basalt-aramid/epoxy and glass-basalt-aramid/epoxy hybrid interply composites under different aging environments

Zekiye Erdoğan, Munise Didem Demirbaş

download PDF

Abstract. In this study, Carbon-Basalt-Aramid (C-B-A) and Glass-Basalt-Aramid (G-B-A) samples were produced, and their thermal expansion coefficient (α), glass-transition temperature (Tg), and dimension change properties were investigated. In the study, thermo-mechanical properties of hybrid composites with and without 12 h and 48 h aging processes were determined. As a result, the properties obtained according to the results of TMA analysis of both hybrid composites with the aging process changed significantly.

Keywords
Carbon-Basalt-Aramid Hybrid, Glass-Basalt-Aramid Hybrid, Thermal Expansion Coefficient, Tg

Published online 8/10/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Zekiye Erdoğan, Munise Didem Demirbaş, Experimental investigations on the thermo-mechanical properties of carbon-basalt-aramid/epoxy and glass-basalt-aramid/epoxy hybrid interply composites under different aging environments, Materials Research Proceedings, Vol. 31, pp 356-365, 2023

DOI: https://doi.org/10.21741/9781644902592-37

The article was published as article 37 of the book Advanced Topics in Mechanics of Materials, Structures and Construction

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] K.K. Chawla. Composite materials:science and engineering, Springer-Verlag, New York, 2012. https://link.springer.com/book/10.1007/978-3-030-28983-6
[2] S. Boncel, M. Rajyashree, R.M. Sundaram, A.H. Windle, K.K.K. Koziol, Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment, ACS Nano. 5 (2011) 9339-9344. https://pubs.acs.org/doi/10.1021/nn202685x
[3] L. Mészáros, T. Turcsán, Development and mechanical properties of carbon fibre reinforced EP/VE hybrid composite systems, Periodica Polytech Mech Eng. 58 (2014) 127-133. https://doi.org/10.3311/PPme.7237
[4] M.G. Callens, L. Gorbatikh, I. Verpoest, Ductile steel fibre composites with brittle and ductile matrices, Composites Part A: Applied Science and Manufacturing. 61 (2014) 235-244. https://doi.org/10.1016/j.compositesa.2014.02.006
[5] M.G. Callens, P. De Cuyper, L. Gorbatikh, I. Verpoest, Effect of fibre architecture on the tensile and impact behaviour of ductile stainless steel fibre polypropylene composites, Composite Structures. 119 (2015), 528-533. https://doi.org/10.1016/j.compstruct.2014.09.028
[6] J.D. Fuller, M.R. Wisnom, Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates, Composites Part A: Applied Science and Manufacturing. 69 (2015) 64-71. https://doi.org/10.1016/j.compositesa.2014.11.004
[7] J.D. Fuller, M. Jalalvand, M.R. Wisnom, Combining fibre rotation and fragmentation to achieve pseudo-ductile CFRP laminates, Composite Structures. 142 (2016) 155-166. https://doi.org/10.1016/j.compstruct.2016.01.073
[8] G. Grail, S. Pimenta, S.T. Pinho, P. Robinson, Exploring the potential of interleaving to delay catastrophic failure in unidirectional composites under tensile loading, Composites Science and Technology. 106 (2015) 100-109. https://doi.org/10.1016/j.compscitech.2014.11.006
[9] G. Czel, S. Pimenta, M.R. Wisnom, P. Robinson Demonstration of pseudo-ductility in unidirectional discontinuous carbon fibre/epoxy prepreg composites Composites Science and Technology. 106 (2015) 110-119. https://doi.org/10.1016/j.compscitech.2014.10.022
[10] N.L. Hancox. Fibre composite hybrid materials, Applied Science Publishers Ltd., London, 1981.
[11] A.R. Bunsell, B. Harris, Hybrid carbon and glass fibre composites, Composites. 5(4) (1974), 157-164. https://doi.org/10.1016/0010-4361(74)90107-4
[12] Hayashi T. Development of new material properties by hybrid composition. 1st report. Fukugo Zairyo (Composite Materials). (1972) 1 18-20. https://cir.nii.ac.jp/crid/1573950398981322752
[13] Hayashi T, Koyama K, Yamazaki A, Kihira M, Development of new material properties by hybrid composition. 2nd report. Fukugo Zairyo (Composite Materials). (1972) 1 21-25. https://cir.nii.ac.jp/crid/1570854174237505408
[14] G. Marom, S. Fischer, F.R. Tuler, H.D. Wagner, Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour, Journal of Materials Science. (1978) 13 (7) 1419-1426. https://link.springer.com/article/10.1007/BF00553194
[15] N. Svensson, Manufacturing of thermoplastic composites from commingled yarns – a review, Journal of Thermoplastic Composite Materials. (1998) 11 (1) 22-56. https://doi.org/10.1177/0892705798011001
[16] G. Czél, M. Jalalvand, M. Wisnom, Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy glass/epoxy hybrid composites, Composite Structures. (2016) 143 362-370. https://doi.org/10.1016/j.compstruct.2016.02.010
[17] W. Wu, Q. Wang, A. Ichenihi, Y. Shen, W. Li, The effects of hybridization on the flexural performances of carbon/glass interlayer and intralayer composites, Polymers. (2018) 10(5) 549. https://doi.org/10.3390/polym10050549
[18] P.M. Bhagwat, M. Ramachandran, P. Raichurkar, Mechanical properties of hybrid glass/carbon fiber reinforced epoxy composites. Materials Today: Proceedings. (2017) 4(8) 7375-7380. https://doi.org/10.1016/j.matpr.2017.07.067
[19] S.K. Chelliah, S.K. Kannivel, A. Vellayaraj, Characterization of failure mechanism in glass, carbon and their hybrid composite laminates in epoxy resin by acoustic emission monitoring, Nondestructive Testing and Evaluation. (2019) 34(3), 254-266. https://doi.org/10.1080/10589759.2019.1590829
[20] M. Aslan, M. Tufan, T. Küçükömeroğlu, Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites, Composites Part B: Engineering. (2018) 140, 241-249. https://doi.org/10.1016/j.compositesb.2017.12.039
[21] A.B.L. Melo, T.H. Panzera, R.T.S. Freire, F. Scarpa, The effect of Portland cement inclusions in hybrid glass fibre reinforced composites based on a full factorial design, Composite Structures. (2018) 202, 233-240. https://doi.org/10.1016/j.compstruct.2018.01.069
[22] N.A. Ramlee, M. Jawaid, E.S. Zainudin, S.A.K. Yamani, Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid, composites, Journal of Materials Research and Technology. (2019) 8(4), 3466-3474. https://doi.org/10.1016/j.jmrt.2019.06.016
[23] N.M. Nurazzi, M.R.M. Asyraf, S. Fatimah Athiyah, S.S. Shazleen, S.A. Rafiqah, M.M. Harussani, S.H. Kamarudin, M.R. Razman, M. Rahmah, E.S. Zainudin et al., A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications, Polymers. (2021) 13 2170. https://doi.org/10.3390/polym13132170
[24] M.J. Suriani, R.A. Ilyas, M.Y.M. Zuhri, A. Khalina, M.T.H. Sultan, S.M. Sapuan, C.M. Ruzaidi, F.N. Wan, F. Zulkifli, M.M. Harussani, M.A. Azman, F.S.M. Radzi, S. Sharma, Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost, Polymers. (2021) 13 3514. https://doi.org/10.3390/polym13203514
[25] L. Prabhu, V. Krishnaraj, S. Sathish, S. Gokulkumar, N. Karthi, L. Rajeshkumar, D. Balaji, N. Vigneshkumar, K.S. Elango, A review on natural fiber reinforced hybrid composites: Chemical treatments, manufacturing methods and potential applications, Materials Today Proceedings. (2021) 45 8080-8085. https://doi.org/10.1016/j.matpr.2021.01.280
[26] A.B.M. Supian, S.M. Sapuan, M. Jawaid et al. Crashworthiness Response of Filament Wound Kenaf/Glass Fibre-reinforced Epoxy Composite Tubes with Influence of Stacking Sequence under Intermediate-velocity Impact Load, Fibers and Polymers. (2022) 23 222-233. https://doi.org/10.1007/s12221-021-0169-9
[27] M. A. F. A. Wahab, S. M. Sapuan, M. M. Harussani, M. Y. M. Zuhri, A. A. Saleh, Conceptual Design of Glass/Renewable Natural Fibre-Reinforced Polymer Hybrid Composite Motorcycle Side Cover, Natural Fibre Composites: Design, Materials Selection and Fabrication, Journal of Renewable Materials. (2021) 9(11) 1973-1989. https://doi.org/10.32604/jrm.2021.016221
[28] P. Sahu, N. Sharma, H.C. Dewangan, S.K. Panda, Thermo-Mechanical Transient Flexure of Glass-Carbon-Kevlar-Reinforced Hybrid Curved Composite Shell Panels: An Experimental Verification, International Journal of Applied Mechanics. (2022) 14(1) 2150120. https://doi.org/10.1142/S1758825121501209
[29] S. Charvani, Ch. Gopal Reddy, G. Narendar, Investigation on Impact and Thermogravimetric Analysis of Aramid and Carbon based Nanocomposites, IOP Conference Series: Materials Science and Engineering. (2021) 1126 012042. https://doi.org/10.1088/1757-899X/1126/1/012042
[30] L. Wu, X. Sun, C. Xiang, W. Wang, F. Zhang, Q. Jiang, Y. Tang, J.-H. Lin, Short Beam Shear Behavior and Failure Characterization of Hybrid 3D Braided Composites Structure with X-ray Micro-Computed Tomography, Polymers. (2020) 12 1931. https://doi.org/10.3390/polym12091931
[31] K. Protchenko, F. Zayoud, M. Urbański, E. Szmigiera, Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars, Materials (Basel). (2020) 13(24) 5839. https://doi.org/10.3390/ma13245839
[32] T.G. Yashas Gowda A. Vinod, P. Madhu, S. Mavinkere Rangappa, S. Siengchin, M. Jawaid, Mechanical and thermal properties of flax/carbon/kevlar based epoxy hybrid composites, Polymer Composite. (2022) 43(8) 5649. https://doi.org/10.1002/pc.26880
[33] F.A. Shishevan, H. Akbulut, M.A. Mohtadi-Bonab, Thermal shock behavior of twill woven carbon fiber reinforced polymer composites, Journal of Composites Science. (2021) 5(1) 33. https://doi.org/10.3390/jcs5010033
[34] R. Grimurugan, N. Senniangiri, B. Pitchia Krishnan, Dr.S. Kavitha, M. Vairavel, Tensile behaviour of hybrid polymer composites, IOP Conference Series. Materials Science and Engineering. (2021) 1059 012033. https://doi.org/10.1088/1757-899X/1059/1/012033
[35] R. Mishra, H. Jamshaid, J. Militky, Basalt nanoparticle reinforced hybrid woven composites mechanical and thermo-mechanical performance, Fibers and Polymers. (2017) 18(12) 2433-2442. https://doi.org/10.1007/s12221-017-7545-5
[36] B. Karacor, M. Ozcanli, Thermal and mechanical characteristic investigation of the hybridization of basalt fiber with aramid fiber and carbon fiber, Polymer Composites. (2022) 43( 11) 8529. https://doi.org/10.1002/pc.27022
[37] K. Raj, A. Vasudevan, V. Mohanavel, Fast Fourier Transform (FFT) analysis on different inter-ply configurations of glass/basalt/aramid/carbon hybridized composites for aircraft structures, Materials Today: Proceedings. (2021) 37(2) 2375-2381. https://doi.org/10.1016/j.matpr.2020.08.079
[38] Y. Pai, D. Pai K M. Vijaya Kini, E. Wong, Experimental investigations on the moisture absorption and mechanical behaviour of basalt-aramid/epoxy hybrid interply composites under different ageing environments, Cogent Engineering. (2022) 9 2080354. https://doi.org/10.1080/23311916.2022.2080354