Sustainable tool technology: Wood-based forming tools
GEUEKE Michael, STEINHEIMER Rainer, LUTZ Maximilian, ENGEL Bernd
download PDFAbstract. Conventional, dies are manufactured subtractive for sheet metal forming. Beside the forming process, high tooling costs, material exertion and energy consumption, the die production offers chances for economic improvements. Especially, individualization and mass customization for small batch series require sustainable low-cost tooling approaches, where sustainable advances through biologicalization may offer new possibilities. In this work, sheet metal forming tools are manufactured by laminated black locust dies to reduce the overall ecological impact. The deformation and wearing behavior of the wooden tools is investigated during a drawing operation for low batch size of an automotive conventional sheet material.
Keywords
Sheet Metal Forming, Sustainability, Wooden Tools, Flexibility, Mass Customization
Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: GEUEKE Michael, STEINHEIMER Rainer, LUTZ Maximilian, ENGEL Bernd, Sustainable tool technology: Wood-based forming tools, Materials Research Proceedings, Vol. 28, pp 1967-1976, 2023
DOI: https://doi.org/10.21741/9781644902479-212
The article was published as article 212 of the book Material Forming
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] C.A. Horowitz, Paris Agreement, Int. Leg. Mater. 55 (2016) 740-755. https://doi.org/10.1017/S0020782900004253
[2] G. Byrne, D. Dimitrov, L. Monostori, R. Teti, F. van Houten, R. Wertheim, Biologicalisation: Biological transformation in manufacturing, CIRP J. Manuf. Sci. Technol. 21 (2018) 1-32. https://doi.org/10.1016/j.cirpj.2018.03.003
[3] G. Herrigel, Globalization and the German industrial production model, J. Labour Mark. Res. 48 (2015) 133-149. https://doi.org/10.1007/s12651-014-0170-5
[4] D.Y. Yang, M. Bambach, J. Cao, J.R. Duflou, P. Groche, T. Kuboki, A. Sterzing, A.E. Tekkaya, C.W. Lee, Flexibility in metal forming, CIRP Ann. 67 (2018) 743-765. https://doi.org/10.1016/j.cirp.2018.05.004
[5] H.A. ElMaraghy, Flexible and reconfigurable manufacturing systems paradigms, Int. J. Flex. Manuf. Syst. 17 (2005) 261-276. https://doi.org/10.1007/s10696-006-9028-7
[6] J. Potting, M.P. Hekkert, E. Worrell, A. Hanemaaijer, Circular Economy: Measuring innovation in the product chain, 2017.
[7] G. Schuh, G. Bergweiler, F. Fiedler, P. Bickendorf, C. Colag, A Review on Flexible Forming of Sheet Metal Parts, 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2019, pp. 1221-1225. https://doi.org/10.1109/IEEM44572.2019.8978879
[8] P. Frohn-Sörensen, M. Geueke, T. Tuli, C. Kuhnhen, M. Manns, B. Engel, 3D printed prototyping tools for flexible sheet metal drawing, Int. J. Adv. Manuf. Technol. 115 (2021) 2623-2637. https://doi.org/10.1007/s00170-021-07312-y
[9] M. Geueke, P. Frohn-Sörensen, J. Reuter, N. Padavu, T. Reinicke, B. Engel, Structural optimization of additively manufactured polymer tools for flexible sheet metal forming, Procedia CIRP 104 (2021) 1345-1350. https://doi.org/10.1016/j.procir.2021.11.226
[10] T. Altan, A.E. Tekkaya, Sheet Metal Forming: Fundamentals, ASM International, 2012.
[11] H. Chalal, F. Abed-Meraim, Numerical Predictions of the Occurrence of Necking in Deep Drawing Processes, Met. – Open Access Metall. J. (2017) 20. https://doi.org/10.3390/met7110455
[12] Z. Marciniak, J.L. Duncan, S.J. Hu, 8 – Cylindrical deep drawing, in Mechanics of Sheet Metal Forming (Second Edition), Z. Marciniak, J.L. Duncan, S.J. Hu (Eds.), Oxford: Butterworth-Heinemann, 2002, pp. 117-128. https://doi.org/10.1016/B978-075065300-8/50011-X
[13] K. Siegert, B. Haller, Prototype Draw Dies for Sheet Metal Parts, SAE Trans. 107 (1998) 44-55.
[14] S.L. Semiatin, ASM Handbook, Volume 14B: Metalworking: Sheet Forming, Asm International, 2006.
[15] M. Tisza, Recent development trends in sheet metal forming, Int. J. Microstruct.. Mater. Prop. 8 (2013) 125-140. https://doi.org/10.1504/IJMMP.2013.052651
[16] E.L. Deladi, Static friction in rubber-metal contacts with application to rubber pad forming processes, University of Twente, Enschede, 2006.
[17] M. Ramezani, Z.M. Ripin, Rubber-Pad Forming Processes, 1st ed. Woodhead, 2012.
[18] P. Spoelstra, E. Djakow, W. Homberg, Rubber pad forming – Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry, AIP Conf. Proceeding 1896 (2017) 080004. https://doi.org/10.1063/1.5008084
[19] C. Achillas, D. Tzetzis, M.O. Raimondo, Alternative production strategies based on the comparison of additive and traditional manufacturing technologies, Int. J. Prod. Res. 55 (2017) 3497-3509. https://doi.org/10.1080/00207543.2017.1282645
[20] C. Reintjes, J. Reuter, M. Hartisch, U. Lorenz, B. Engel, Towards CAD-Based Mathematical Optimization for Additive Manufacturing – Designing Forming Tools for Tool-Bound Bending, in Uncertainty in Mechanical Engineering, Cham, 2021, pp. 12-22. https://doi.org/10.1007/978-3-030-77256-7_2
[21] I. Durgun, Sheet metal forming using FDM rapid prototype tool, Rapid Prototyp. J. 21 (2015) 412-422. https://doi.org/10.1108/RPJ-01-2014-0003
[22] P. Frohn-Sörensen, M. Geueke, B. Engel, B. Loffler, P. Bickendorf, A. Asimi, G. Bergweiler, G. Schuth, Design for 3D Printed Tools: Mechanical Material Properties for Direct Polymer Additive Tooling, Polym. 14 (2022). https://doi.org/10.3390/polym14091694 https://doi.org/10.3390/polym14091694
[23] R. Kolleck, C. Koroschetz, G. Schickhofer, M. Augustin, Alternativer Werkstoff Holz spart Werkzeugkosten für die Blechumformung, Maschinenmarkt 38 (2008) 30-34.
[24] M. Pinto, A. Santos, P. Teixeira, P. Bolt, Study on the usability and robustness of polymer and wood materials for tooling in sheet metal forming, J. Mater. Process. Technol. 202 (2008) 47-53. https://doi.org/10.1016/j.jmatprotec.2007.08.082
[25] Das Holz der Robinie – Eigenschaften und Verwendung – LWF Wissen 84. https://www.lwf.bayern.de/forsttechnik-holz/holzverwendung/265497/index.php (accessed Dec. 01, 2022).
[26] D.W. Green, J.E. Winandy, D.E. Kretschmann, Mechanical properties of wood, Wood Handb. Wood Eng. Mater. Madison WI USDA For. Serv. For. Prod. Lab. 1999 Gen. Tech. Rep. FPL GTR-113 Pages 41-445, vol. 113, 1999. Available: https://www.fs.usda.gov/research/treesearch/7149
[27] U. Lohmann, Holz Handbuch, 7th ed. 2016.
[28] F. Kollmann, Technologie des Holzes und der Holzwerkstoffe, vol. 1, 1951.
[29] L. Vorreiter, Holztechnologisches Handbuch: Allgemeines, Holzkunde, Holzschutz und Holzvergütung. G. Fromme, 1949.
[30] R. Wagenführ, André Wagenführ, Holzatlas, 7th ed. 2021.
[31] G. Baumann, S. Hartmann, U. Müller, C. Kurzböck, F. Feist, Comparison of the two material models 58, 143 in LS Dyna for modelling solid birch wood, 2019.