Nonlinear Analysis of Beams made of High Strength Concrete Prestressed with Unbonded Tendons
KOWALSKI Damian
download PDFAbstract. The paper presents numerical analysis methods of High-Strength Concrete (HSC) beams prestressed with unbonded tendons. Furthermore, it compares obtained results with experimental data from the literature. Prestressing tendons have been modelled in a discrete form, using one-dimensional finite elements. A temperature drop inflicted prestress force. Contact issues have been considered, i.e. friction and pressure at the interface between the cable and the duct wall. In the work, it was found that it is possible to obtain satisfactory accuracy of results with the model in use. Accurate P-Δ (load-deflection) curves were achieved matching experimental data.
Keywords
Reinforced Concrete Modelling, Numerical Calculations, Prestressed Structures, Finite Element Analysis
Published online 7/20/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: KOWALSKI Damian, Nonlinear Analysis of Beams made of High Strength Concrete Prestressed with Unbonded Tendons, Materials Research Proceedings, Vol. 24, pp 75-82, 2022
DOI: https://doi.org/10.21741/9781644902059-12
The article was published as article 12 of the book Terotechnology XII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] O.F. Hussien, T.H.K. Elafandy, A.A. Abdelrahman, S.A. Abdel Baky, E.A. Nasr. Behavior of bonded and unbonded prestressed normal and high strength concrete beams. HBRC Journal 8 (2012) 239–251. https://doi.org/10.1016/j.hbrcj.2012.10.008
[2] D. Kowalski, R. Gąćkowski, J. Selejdak. Validation of microplane coupled damage-plasticity model with gradient regularization (MCDPMwGR) on prestressed and non-prestressed concrete beams. (submitted)
[3] EN 1992-1-1:2004 Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings.
[4] Fédération Internationale du Béton., Comité Euro-International du Béton., and Fédération Internationale de la Précontrainte. Model Code 2010 : First complete draft, Fédération internationale du béton, 2010.
[5] Z.P. Bazant, P.G. Gambarova. Crack shear in concrete: crack band microplane model. J. Struct. Eng. 110 (1984) 2015-2035.
https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2015)
[6] Z.P. Bažant, P.C. Prat. Microplane model for brittle-plastic material: I. Theory. J. Eng. Mech. 114 (1988) 1672-1688.
https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
[7] J. Lubliner, J. Oliver, S. Oller, E. Oñate. A plastic-damage model for concrete. Int. J. Solids Struct. 25 (1989) 299-326.
https://doi.org/10.1016/0020-7683(89)90050-4
[8] I. Carol, P.C. Pratt. New explicit microplane model for concrete : theoretical aspects and numerical implementation. Int. J. Solids Struct. 29 (1992) 1173-1191.
https://doi.org/10.1016/0020-7683(92)90141-F
[9] Z.P. Bazant, Y. Xiang, P.C. Prat. Microplane model for concrete. I: Stress-strain boundaries and finite strain. Journal of Engineering Mechanics 122 (1996) 245-254.
https://doi.org/10.1061/(ASCE)0733-9399(1996)122:3(245)
[10] Z.P. Bažant, F.C. Caner, I. Carol, M.D. Adley, S.A. Akers. Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress. J. Eng. Mech. 126 (2000) 944 953.
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944)
[11] P. Grassl, M. Jirásek. Damage-plastic model for concrete failure. Int. J. Solids Struct. 43 (2006) 7166-7196.
https://doi.org/10.1016/j.ijsolstr.2006.06.032
[12] P. Grassl, D. Xenos, U. Nyström, R. Rempling, K. Gylltoft. CDPM2: A damage-plasticity approach to modelling the failure of concrete. Int. J. Solids Struct. 50 (2013) 3805 3816.
https://doi.org/10.1016/j.ijsolstr.2013.07.008
[13] I. Zreid, M. Kaliske. Regularization of microplane damage models using an implicit gradient enhancement. Int. J. Solids Struct. 51 (2014) 3480-3489.
https://doi.org/10.1016/j.ijsolstr.2014.06.020
[14] H. Jiang, J. Zhao. Calibration of the continuous surface cap model for concrete. Finite Elements in Analysis and Design 97 (2015) 1-19.
https://doi.org/10.1016/j.finel.2014.12.002
[15] D. Xenos, P. Grassl. Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2. Finite Elements in Analysis and Design 117-118 (2016) 11-20.
https://doi.org/10.1016/j.finel.2016.04.002
[16] J. Zhang, J. Li, J.W. Ju. 3D elastoplastic damage model for concrete based on novel decomposition of stress. Int. J. Solids Struct. 94-95 (2016) 125-137.
https://doi.org/10.1016/j.ijsolstr.2016.04.038
[17] I. Zreid, M. Kaliske. Microplane modeling of cyclic behavior of concrete: a gradient plasticity-damage formulation. Proc. Appl. Math. Mech. 16 (2016) 415-416.
https://doi.org/10.1002/pamm.201610196.
[18] W. Demin, H. Fukang. Investigation for plastic damage constitutive models of the concrete material. Procedia Eng. 210 (2017) 71-78.
https://doi.org/10.1016/j.proeng.2017.11.050
[19] B. R. Indriyantho, I. Zreid, M. Kaliske. Modeling of a Concrete Dam under Earthquake Loading by A Nonlocal Microplane Approach. Procedia Eng. 171 (2017) 1010-1018.
https://doi.org/10.1016/j.proeng.2017.01.435
[20] B. Paliwal, Y. Hammi, R.D. Moser, M.F. Horstemeyer. A three-invariant cap-plasticity damage model for cementitious materials. Int. J. Solids Struct. 108 (2017) 186-202.
https://doi.org/10.1016/j.ijsolstr.2016.12.015
[21] M. Szczecina, A. Winnicki. Relaxation Time in CDP Model Used for Analyses of RC Structures. Procedia Eng. 193 (2017) 369-376.
https://doi.org/10.1016/j.proeng.2017.06.226
[22] I. Zreid, M. Kaliske. A gradient enhanced plasticity–damage microplane model for concrete. Computational Mechanics 62 (2018) 1239-1257.
https://doi.org/10.1007/s00466-018-1561-1
[23] A. Wosatko, A. Winnicki, M. A. Polak, J. Pamin. Role of dilatancy angle in plasticity-based models of concrete. Arch. Civil Mech. Eng. 19 (2019) 1268-1283.
https://doi.org/10.1016/j.acme.2019.07.003
[24] B.R. Indriyantho, I. Zreid, R. Fleischhauer, M. Kaliske. Modelling of high velocity impact on concrete structures using a rate-dependent plastic-damage microplane approach at finite strains. Materials 13 (2020) art. 5165.
https://doi.org/10.3390/ma13225165 [25] M. Ulewicz, A. Pietrzak. Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats. Materials 14 (2021) art. 872. https://doi.org/10.3390/ma14040872
[26] J. Jura, M. Ulewicz. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete. Materials 14 (2021) art. 6708. https://doi.org/10.3390/ma14216708
[27] J. Pietraszek, A. Gadek-Moszczak, N. Radek. The estimation of accuracy for the neural network approximation in the case of sintered metal properties. Studies in Computational Intelligence 513 (2014) 125-134. https://doi.org/10.1007/978-3-319-01787-7_12
[28] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8. https://doi.org/10.4028/www.scientific.net/SSP.235.1
[29] J. Pietraszek, R. Dwornicka, A. Szczotok. The bootstrap approach to the statistical significance of parameters in the fixed effects model. ECCOMAS Congress 2016 – Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering 3, 6061-6068. https://doi.org/10.7712/100016.2240.9206
[30] Ł.J. Orman Ł.J., N. Radek, J. Pietraszek, M. Szczepaniak. Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies 13 (2020) art. 2700. https://doi.org/10.3390/en13112700
[31] N. Radek, J. Pietraszek, A. Gadek-Moszczak, Ł.J. Orman, A. Szczotok. The morphology and mechanical properties of ESD coatings before and after laser beam machining, Materials 13 (2020) art. 2331. https://doi.org/10.3390/ma13102331
[32] N. Radek, J. Konstanty, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, D. Przestacki. The effect of laser beam processing on the properties of WC-Co coatings deposited on steel. Materials 14 (2021) art. 538. https://doi.org/10.3390/ma14030538
[33] A. Szczotok, J. Pietraszek, N. Radek. Metallographic Study and Repeatability Analysis of γ’ Phase Precipitates in Cored, Thin-Walled Castings Made from IN713C Superalloy. Archives of Metallurgy and Materials 62 (2017) 595-601. https://doi.org/10.1515/amm-2017-0088
[34] J. Pietraszek, N. Radek, A.V. Goroshko. Challenges for the DOE methodology related to the introduction of Industry 4.0. Production Engineering Archives 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[35] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, D. Klimecka-Tatar. Corrosion resistance depth profiles of nitrided layers on austenitic stainless steel produced at elevated temperatures, Archives of Metallurgy and Materials 54 (2009) 115-120.
[36] D. Klimecka-Tatar, H. Bala, B. Slusarek, K. Jagielska-Wiaderek. The effect of consolidation method on elctrochemical corrosion of polymer bonded Nd-Fe-B type magnetic material, Archives of Metallurgy and Materials 54 (2009) 247-256.
[37] R. Włodarczyk, A. Dudek, Z. Nitkiewicz. Corrosion analysis of sintered material used for low-temperature fuel cell plates, Archives of Metallurgy and Materials 56 (2011) 181-186. https://doi.org/10.2478/v10172-011-0021-0
[38] E. Skrzypczak-Pietraszek, A. Szewczyk, A. Piekoszewska, H. Ekiert. Biotransformation of hydroquinone to arbutin in plant in vitro cultures – Preliminary results. Acta Physiologiae Plantarum 27 (2005) 79-87. https://doi.org/10.1007/s11738-005-0039-x
[39] E. Skrzypczak-Pietraszek. Phytochemistry and biotechnology approaches of the genus exacum. In: The Gentianaceae – Volume 2: Biotechnology and Applications, 2015, 383-401. https://doi.org/10.1007/978-3-642-54102-5_16
[40] E. Skrzypczak-Pietraszek, K. Reiss, P. Żmudzki, J. Pietraszek. Enhanced accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures analyzed by UPLC-MS/MS. PLoS ONE 13 (2018) art. e0202556. https://doi.org/10.1371/journal.pone.0202556
[41] T. Lipiński, A. Wach. Influence of outside furnace treatment on purity medium carbon steel, METAL 2014 – 23rd Int. Conf. on Metallurgy and Materials (2014), Ostrava, Tanger 738-743.
[42] T. Lipiński. Corrosion resistance of 1.4362 steel in boiling 65% nitric acid, Manufacturing Technology 16 (2016) 1004-1009.
[43] T. Lipiński. Roughness of 1.0721 steel after corrosion tests in 20% NaCl, Production Engineering Archives 15 (2017) 27-30. https://doi.org/10.30657/pea.2017.15.07
[44] A. Szczotok, R. Przeliorz. Phase transformations in CMSX-4 nickel-base superalloy, IOP Conference Series: Materials Science and Engineering 35 (2012) art. 012005. https://doi.org/10.1088/1757-899X/35/1/012005
[45] K. Trzewiczek, A. Szczotok, A. Gadek-Moszczak. Evaluation of the state for the material of the live steam superheater pipe coils of V degree. Advanced Materials Research 874 (2014) 35-42. https://doi.org/10.4028/www.scientific.net/AMR.874.35
[46] J. Pietraszek, A. Szczotok, N. Radek. The fixed-effects analysis of the relation between SDAS and carbides for the airfoil blade traces. Archives of Metallurgy and Materials 62 (2017) 235 239. https://doi.org/10.1515/amm-2017-0035
[47] A. Szczotok, N. Radek, R. Dwornicka. Effect of the induction hardening on microstructures of the selected steels. METAL 2018 – 27th Int. Conf. Metall. Mater. (2018), Ostrava, Tanger 1264-1269.