Historical Introduction to Silicon Carbide Discovery, Properties and Technology
K. Vasilevskiy, N.G. Wright
This chapter reviews the history of silicon carbide technology from the first developments in the early 1890s to the present day and highlights the major developments that have facilitated the emergence of the world-wide SiC electronics industry. Physical, chemical and electrical properties of silicon carbide are also briefly described and discussed. The advantage of silicon carbide over silicon in use for fabrication of semiconductor power devices is illustrated by the rough estimation of blocking layer parameters in unipolar SiC and Si devices and comparison of their characteristics. Current state in commercial production and availability of SiC wafers and epitaxial structures as well as potential market of SiC power devices are also outlined.
Keywords
Acheson Process, BJT, Carborundum, Cree, Crystal Growth, DIMOSFET, Electroluminescence, Epitaxy, GTO, Hexagonality, History, HTCVD, IGBT, Inverter, LED, Lely Platelets, LETI Method, Lifetime Enhancement Thermal Oxidation, Material Properties, Micropipe, Modified Lely Method, Moissanite, MOSFET, Polytypism, Radio Detector, RAF Growth Process, Schottky Diode, SiC, SiC Devices, Silicon Carbide, Stacking Fault, Step-Controlled Epitaxy, Step-Flow Growth, Sublimation Sandwich Method, Technology, Varistor
Published online 2/15/2020, 62 pages
Citation: K. Vasilevskiy, N.G. Wright, Historical Introduction to Silicon Carbide Discovery, Properties and Technology, Materials Research Foundations, Vol. 69, pp 1-62, 2020
DOI: https://doi.org/10.21741/9781644900673-1
Part of the book on Advancing Silicon Carbide Electronics Technology II
References
[1] J. J. Berzelius, “Untersuchungen über die Flussspathsäure und deren merkwürdigsten Verbindungen,” Annalen der Physik und der physikalischen Chemie, vol. 77, no. 6, pp. 169-230, 1824. https://doi.org/10.1002/andp.18240770603
[2] G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov, F. Schmid, M. Weidner, “SiC MATERIAL PROPERTIES,” Sic Materials and Devices, WORLD SCIENTIFIC, 2006, pp. 1-41.
[3] E. G. Acheson, “Carborundum: Its history, manufacture and uses,” Journal of the Franklin Institute, vol. 136, no. 3, pp. 194-203, 1893. https://doi.org/10.1016/0016-0032(93)90311-h
[4] E. G. Acheson, “Carborundum: Its history, manufacture and uses,” Journal of the Franklin Institute, vol. 136, no. 4, pp. 279-289, 1893. https://doi.org/10.1016/0016-0032(93)90369-6
[5] E. G. Acheson, PRODUCTION 0F ARTIFICIAL CRYSTALLINE GARBONACEOUS MATERIALS, US Patent 492,767, 1893.
[6] M. H. Moissan, “Etude du siliciure de carbone de la meteorite Canyon Diablo,” Comptes rendus hebdomadaires des séances de l’Académie des sciences., vol. 140, pp. 405–406, 1905. https://doi.org/10.5962/bhl.part.29049
[7] T. L. Daulton, T. J. Bernatowicz, R. S. Lewis, S. Messenger, F. J. Stadermann, S. Amari, “Polytype distribution of circumstellar silicon carbide,” Geochimica et Cosmochimica Acta, vol. 67, no. 24, pp. 4743-4767, 2003. https://doi.org/10.1016/s0016-7037(03)00272-2
[8] F. V. Kaminskiy, V. J. Bukin, S. V. Potapov, N. G. Arkus, V. G. Ivanova, “Discoveries of silicon carbide under natural conditions and their genetic importance,” International Geology Review, vol. 11, no. 5, pp. 561-569, 1969. https://doi.org/10.1080/00206816909475090
[9] A. A. Shiryaev, W. L. Griffin, E. Stoyanov, “Moissanite (SiC) from kimberlites: Polytypes, trace elements, inclusions and speculations on origin,” Lithos, vol. 122, no. 3, pp. 152-164, 2011. https://doi.org/10.1016/j.lithos.2010.12.011
[10] S. Adachi, “Properties of Group-IV, III-V and II-VI Semiconductors,” John Wiley & Sons, Ltd, 2005.
[11] A. R. Verma, P. Krishna, Polymorphism and Polytypism in Crystals, New York Wiley, 1966.
[12] F. Bechstedt, P. Kackell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmuller, “Polytypism and Properties of Silicon Carbide,” physica status solidi (b), vol. 202, no. 1, pp. 35-62, 1997. https://doi.org/10.1002/1521-3951(199707)202:1<35::aid-pssb35>3.0.co;2-8
[13] W. van Haeringen, P. A. Bobbert, W. H. Backes, “On the Band Gap Variation in SiC Polytypes,” physica status solidi (b), vol. 202, no. 1, pp. 63-79, 1997. https://doi.org/10.1002/1521-3951(199707)202:1<63::Aid-pssb63>3.0.Co;2-e
[14] W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, B. Segall, “Electronic Band Structure of SiC Polytypes: A Discussion of Theory and Experiment,” physica status solidi (b), vol. 202, no. 1, pp. 5-33, 1997. https://doi.org/10.1002/1521-3951(199707)202:1
[15] A. Lebedev, Y. Tairov, “Polytypism in SiC: Theory and experiment,” Journal of Crystal Growth, vol. 401, pp. 392-396, 2014. https://doi.org/10.1016/j.jcrysgro.2014.01.021
[16] H. Baumhauer, “VII. Über die Krystalle des Carborundums,” Zeitschrift für Kristallographie – Crystalline Materials, vol. 50, no. 1-6, pp. 33-39, 1912. https://doi.org/10.1524/zkri.1912.50.1.33
[17] G. Honjo, S. Miyake, T. Tomita, “Silicon carbide of 594 layers,” Acta Crystallographica, vol. 3, no. 5, pp. 396-397, 1950. https://doi.org/10.1107/s0365110x50001105
[18] L. S. Ramsdell, “Studies on silicon carbide,” American Mineralogist, vol. 32, pp. 64-82, 1947.
[19] A. L. Ortiz, F. Sanchez-Bajo, F. L. Cumbrera, F. Guiberteau, “The prolific polytypism of silicon carbide,” Journal of Applied Crystallography, vol. 46, no. 1, pp. 242-247, 2013. https://doi.org/10.1107/S0021889812049151
[20] H. Jagodzinski, “Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Rontgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Rontgenintensitaten,” Acta Crystallographica, vol. 2, no. 4, pp. 201-207, 1949. https://doi.org/10.1107/S0365110X49000552
[21] U. Kaiser, A. Chuvilin, V. Kyznetsov, Y. Butenko, “Evidence for 9R-SiC?,” Microscopy and Microanalysis, vol. 7, no. 04, pp. 368-369, 2001. https://doi.org/10.1017/s1431927601010364
[22] D. S. Korolev, A. A. Nikolskaya, N. O. Krivulin, A. I. Belov, A. N. Mikhaylov, D. A. Pavlov, D. I. Tetelbaum, N. A. Sobolev, M. Kumar, “Formation of hexagonal 9R silicon polytype by ion implantation,” Technical Physics Letters, vol. 43, no. 8, pp. 767-769, 2017. https://doi.org/10.1134/s1063785017080211
[23] N. W. Jepps, T. F. Page, “Polytypic transformations in silicon carbide,” Progress in Crystal Growth and Characterization, vol. 7, no. 1-4, pp. 259-307, 1983. https://doi.org/10.1016/0146-3535(83)90034-5
[24] P. Krishna, R. C. Marshall, C. E. Ryan, “The discovery of a 2H-3C solid state transformation in silicon carbide single crystals,” Journal of Crystal Growth, vol. 8, no. 1, pp. 129-131, 1971. https://doi.org/10.1016/0022-0248(71)90033-9
[25] S. M. Sze, Physics of Semiconductor Devices, Second ed., New York: Wiley, 1981, pp. 868.
[26] Y. A. Goldberg, M. E. Levinshtein, S. L. Rumyantsev, “Silicon Carbide,” in: Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur, eds., New York: John Wiley & Sons, Inc. , 2001.
[27] W. J. Choyke, G. Pensl, “Physical Properties of SiC,” MRS Bulletin, vol. 22, no. 3, pp. 25-29, 1997. https://doi.org/10.1557/s0883769400032723
[28] A. A. Lebedev, “Deep level centers in silicon carbide: A review,” Semiconductors, vol. 33, no. 2, pp. 107-130, 1999. https://doi.org/10.1134/1.1187657
[29] A. A. Lebedev ed. “Radiation Effects in Silicon Carbide,” Materials Research Foundations, Millersville: Materials Research Forum LLC, 2017, p. 171.
[30] M. J. Bozack, “Surface Studies on SiC as Related to Contacts,” physica status solidi (b), vol. 202, no. 1, pp. 549-580, 1997. https://doi.org/10.1002/1521-3951(199707)202:1<549::aid-pssb549>3.0.co;2-6
[31] S. Y. Davydov, “On the electron affinity of silicon carbide polytypes,” Semiconductors, vol. 41, no. 6, pp. 696-698, 2007. https://doi.org/10.1134/s1063782607060152
[32] P. G. Neudeck, D. J. Spry, L. Chen, N. F. Prokop, M. J. Krasowski, “Demonstration of 4H-SiC Digital Integrated Circuits Above 800 °C,” IEEE Electron Device Letters, vol. 38, no. 8, pp. 1082-1085, 2017. https://doi.org/10.1109/led.2017.2719280
[33] P. G. Neudeck, D. J. Spry, C. Liang-Yu, G. M. Beheim, R. S. Okojie, C. W. Chang, R. D. Meredith, T. L. Ferrier, L. J. Evans, M. J. Krasowski, N. F. Prokop, “Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500C,” Electron Device Letters, IEEE, vol. 29, no. 5, pp. 456-459, 2008.
[34] P. G. Neudeck, S. L. Garverick, D. J. Spry, L.-Y. Chen, G. M. Beheim, M. J. Krasowski, M. Mehregany, “Extreme temperature 6H-SiC JFET integrated circuit technology,” physica status solidi (a), vol. 206, no. 10, pp. 2329-2345, 2009.
[35] G. L. Harris ed. “Properties of Silicon Carbide,” London, United Kingdom: INSPEC, the Institution of Electrical Engineers, 1995, p. 295.
[36] J. C. Bose, Detector for electrical disturbances, US Patent 755,840, 1904.
[37] T. H. Lee, “The (pre-) history of the integrated circuit: a random walk,” IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 2, pp. 16-22, 2007. https://doi.org/10.1109/N-SSC.2007.4785573
[38] H. H. C. Dunwoody, Wireless telegraph system, US Patent 837616, 1906.
[39] G. W. Pierce, “Crystal Rectifiers for Electric Currents and Electric Oscillations. Part I. Carborundum,” Physical Review (Series I), vol. 25, no. 1, pp. 31-60, 1907. https://doi.org/10.1103/physrevseriesi.25.31
[40] G. W. Pickard, Oscillation detector and rectifier, US Patent 912,613, 1909.
[41] H. J. Round, “A Note on Carborundum,” Electrical World, 1907, p. 309.
[42] O. V. Lossev, “Behavior of contact detectors; the effect of temperature on the generating contacts (in Russian) ” Telegrafia i telefonia bez provodov (TiTbp), no. 18, pp. 45-62, 1923.
[43] O. V. Lossev, “Oscillating Crystals,” The Wireless World and Radio Review, no. 271, pp. 93-96, 1924.
[44] O. V. Lossev, “Luminous carborundum detector and detection effect and oscillations with crystals,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 6, no. 39, pp. 1024-1044, 1928. https://doi.org/10.1080/14786441108564683
[45] E. E. Loebner, “Subhistories of the light emitting diode,” IEEE Transactions on Electron Devices, vol. 23, no. 7, pp. 675-699, 1976. https://doi.org/10.1109/t-ed.1976.18472
[46] R. O. Grisdale, “Silicon carbide varistor,” Bell Laboratories Record, vol. 19, no. 10, pp. 46-51, 1940.
[47] J. Mitchell, J. Shewchun, “High‐Current Characteristics of Silicon Carbide Varistors,” Journal of Applied Physics, vol. 42, no. 2, pp. 889-892, 1971. https://doi.org/10.1063/1.1660124
[48] HVR International Product Catalogue: Information on www.hvrint.de.
[49] M. Riordan, L. Hoddeson, “The origins of the pn junction,” IEEE Spectrum, vol. 34, no. 6, pp. 46-51, 1997. https://doi.org/10.1109/6.591664
[50] J. A. Lely, “Darstellung von Einkristallen von Silicium Carbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen,” Berichte der Deutschen Keramischen Gesellschaft, vol. 8, pp. 229, 1955.
[51] J. A. Lely, SUBLIMATION PROCESS FOR MANUFACTURING SILICON CARBIDE CRYSTALS, US Patent 2,854,364, 1958.
[52] J. R. O’Connor, C. E. Smiltens eds., “Silicon Carbide, A High Temperature Semiconductor,” New York: Pergamon, 1960, p. 521.
[53] H. C. Chang, L. J. Kroko, APPARATUS FOR AND PREPARATION OF SILICON CARBIDE SINGLE CRYSTALS, US Patent 3,275,415, 1966.
[54] Y. A. Vodakov, E. N. Mokhov, A. D. Roenkov, D. T. Saidbekov, “Effect of crystallographic orientation on the polytype stabilization and transformation of silicon carbide,” Physica Status Solidi (a), vol. 51, no. 1, pp. 209-215, 1979. https://doi.org/10.1002/pssa.2210510123
[55] Y. M. Tairov, V. F. Tsvetkov, “Investigation of growth processes of ingots of silicon carbide single crystals,” Journal of Crystal Growth, vol. 43, no. 2, pp. 209-212, 1978. https://doi.org/10.1016/0022-0248(78)90169-0
[56] Y. M. Tairov, V. F. Tsvetkov, “General principles of growing large-size single crystals of various silicon carbide polytypes,” Journal of Crystal Growth, vol. 52, pp. 146-150, 1981. https://doi.org/10.1016/0022-0248(81)90184-6
[57] Y. M. Tairov, V. F. Tsvetkov, “Progress in controlling the growth of polytypic crystals,” Progress in Crystal Growth and Characterization, vol. 7, no. 1-4, pp. 111-162, 1983. https://doi.org/10.1016/0146-3535(83)90031-x
[58] Y. A. Vodakov, E. N. Mokhov, M. G. Ramm, A. D. Roenkov, “Epitaxial growth of silicon carbide layers by sublimation „sandwich method” (I) growth kinetics in vacuum,” Kristall und Technik, vol. 14, no. 6, pp. 729-740, 1979. https://doi.org/10.1002/crat.19790140618
[59] Y. A. Vodakov, E. N. Mokhov, Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique, US Patent 4,147,572, 1979.
[60] H. Matsunami, S. Nishino, M. Odaka, T. Tanaka, “Epitaxial growth of α-SiC layers by chemical vapor deposition technique,” Journal of Crystal Growth, vol. 31, pp. 72-75, 1975. https://doi.org/10.1016/0022-0248(75)90113-x
[61] S. Nishino, H. Matsunami, T. Tanaka, “Growth and morphology of 6H-SiC epitaxial layers by CVD,” Journal of Crystal Growth, vol. 45, pp. 144-149, 1978. https://doi.org/10.1016/0022-0248(78)90426-8
[62] H. Matsunami, S. Nishino, H. Ono, “IVA-8 heteroepitaxial growth of cubic silicon carbide on foreign substrates,” IEEE Transactions on Electron Devices, vol. 28, no. 10, pp. 1235-1236, 1981. https://doi.org/10.1109/t-ed.1981.20556
[63] S. Nishino, J. A. Powell, H. A. Will, “Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices,” Applied Physics Letters, vol. 42, no. 5, pp. 460-462, 1983. https://doi.org/10.1063/1.93970
[64] K. Shibahara, S. Nishino, H. Matsunami, “Antiphase‐domain‐free growth of cubic SiC on Si(100),” Applied Physics Letters, vol. 50, no. 26, pp. 1888-1890, 1987. https://doi.org/10.1063/1.97676
[65] N. Kuroda, K. Shibahara, W. Yoo, S. Nishino, H. Matsunami, “Step-Controlled VPE Growth of SiC Single Crystals at Low Temperatures,” in Extended Abstracts of the 1987 Conference on Solid State Devices and Materials, 1987, pp. 227-230.
[66] H. Matsunami, T. Kimoto, “Step-controlled epitaxial growth of SiC: High quality homoepitaxy,” Materials Science and Engineering: R: Reports, vol. 20, no. 3, pp. 125-166, 1997. https://doi.org/10.1016/S0927-796X(97)00005-3
[67] T. Kimoto, A. Itoh, H. Matsunami, “Step-Controlled Epitaxial Growth of High-Quality SiC Layers,” physica status solidi (b), vol. 202, no. 1, pp. 247-262, 1997. https://doi.org/10.1002/1521-3951(199707)202:1<247::aid-pssb247>3.0.co;2-q
[68] O. Kordina, C. Hallin, R. C. Glass, E. Janzen, “A novel hot-wall CVD reactor for SiC epitaxy,” Inst. Phys. Conf. Ser., vol. 137, pp. 41-44, 1994.
[69] O. Kordina, A. Henry, J. P. Bergman, N. T. Son, W. M. Chen, C. Hallin, E. Janzén, “High quality 4H‐SiC epitaxial layers grown by chemical vapor deposition,” Applied Physics Letters, vol. 66, no. 11, pp. 1373-1375, 1995. https://doi.org/10.1063/1.113205
[70] P. A. Ivanov, V. E. Chelnokov, “Recent developments in SiC single-crystal electronics,” Semiconductor Science and Technology, vol. 7, no. 7, pp. 863-880, 1992. https://doi.org/10.1088/0268-1242/7/7/001
[71] J. W. Palmour, J. A. Edmond, H. S. Kong, C. H. Carter, “6H-silicon carbide devices and applications,” Physica B: Condensed Matter, vol. 185, no. 1-4, pp. 461-465, 1993. https://doi.org/10.1016/0921-4526(93)90278-e
[72] J. W. Palmour, J. A. Edmond, H. S. Kong, J. C. H. Carter, “Vertical power devices in silicon carbide,” Silicon Carbide and Related Materials, Inst. of Phys. Conf. Series vol. 137, pp. 499-502, 1994.
[73] W. v. Münch, P. Hoeck, “Silicon carbide bipolar transistor,” Solid-State Electronics, vol. 21, no. 2, pp. 479-480, 1978. https://doi.org/10.1016/0038-1101(78)90283-6
[74] R. F. Davis, C. H. Carter, C. E. Hunter, Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide, US Patent 4,866,005, 1989.
[75] J. Edmond, H. Kong, A. Suvorov, D. Waltz, J. C. Carter, “6H-Silicon Carbide Light Emitting Diodes and UV Photodiodes,” physica status solidi (a), vol. 162, no. 1, pp. 481-491, 1997. https://doi.org/10.1002/1521-396x(199707)162:1<481::aid-pssa481>3.0.co;2-o
[76] R. C. Glass, D. Henshall, V. F. Tsvetkov, J. C. H. Carter, “SiC Seeded Crystal Growth,” physica status solidi (b), vol. 202, no. 1, pp. 149-162, 1997. https://doi.org/10.1002/1521-3951(199707)202:1<149::aid-pssb149>3.0.co;2-m
[77] S. G. Müller, R. C. Glass, H. M. Hobgood, V. F. Tsvetkov, M. Brady, D. Henshall, D. Malta, R. Singh, J. Palmour, C. H. Carter, “Progress in the industrial production of SiC substrates for semiconductor devices,” Materials Science and Engineering: B, vol. 80, no. 1-3, pp. 327-331, 2001. https://doi.org/10.1016/s0921-5107(00)00658-9
[78] M. Tuominen, R. Yakimova, R. C. Glass, T. Tuomi, E. Janzén, “Crystalline imperfections in 4H SiC grown with a seeded Lely method,” Journal of Crystal Growth, vol. 144, no. 3-4, pp. 267-276, 1994. https://doi.org/10.1016/0022-0248(94)90466-9
[79] J. Heindl, H. P. Strunk, V. D. Heydemann, G. Pensl, “Micropipes: Hollow Tubes in Silicon Carbide,” physica status solidi (a), vol. 162, no. 1, pp. 251-262, 1997. https://doi.org/10.1002/1521-396x(199707)162:1<251::aid-pssa251>3.0.co;2-7
[80] D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, K. Takatori, “Ultrahigh-quality silicon carbide single crystals,” Nature, vol. 430, no. 7003, pp. 1009-1012, 2004. https://doi.org/10.1038/nature02810
[81] Information on https://www.reportsanddata.com/press-release/global-silicon-carbide-wafer-market
[82] S. Nakamura, T. Mukai, M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994. https://doi.org/10.1063/1.111832
[83] X. She, A. Q. Huang, O. Lucia, B. Ozpineci, “Review of Silicon Carbide Power Devices and Their Applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8193-8205, 2017. https://doi.org/10.1109/tie.2017.2652401
[84] M. Schadt, G. Pensl, R. P. Devaty, W. J. Choyke, R. Stein, D. Stephani, “Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide,” Applied Physics Letters, vol. 65, no. 24, pp. 3120-3122, 1994. https://doi.org/10.1063/1.112455
[85] W. J. Schaffer, H. S. Kong, G. H. Negley, J. Palmour, “Hall effect and CV measurements on epitaxial 6H- and 4H-SiC,” Inst. Phys. Conf. Ser., vol. 137, pp. 155-159, 1994.
[86] A. P. Dmitriev, A. O. Konstantinov, D. Litvin, V. I. Sankin, “Impact ionization and superlattice in 6H-SiC,” Soviet physics. Semiconductors, vol. 17, pp. 686-689, 1983.
[87] A. O. Konstantinov, “Influence of temperature on impact ionization and avalanche breakdown in silicon carbide,” Soviet Phys. Semicond, vol. 23, no. 1, pp. 31-35, 1989. [in Russian: А. О. Константинов, Температурная зависимость ударной ионизации и лавинного пробоя в карбиде кремния, ФТП 23, (1989) c. 52-57].
[88] K. V. Vassilevski, V. A. Dmitriev, A. V. Zorenko, “Silicon carbide diode operating at avalanche breakdown current density of 60 kA/cm2,” Journal of Applied Physics, vol. 74, no. 12, pp. 7612-7614, 1993. https://doi.org/10.1063/1.354963
[89] A. O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt, “Ionization rates and critical fields in 4H silicon carbide,” Applied Physics Letters, vol. 71, no. 1, pp. 90-92, 1997. https://doi.org/10.1063/1.119478
[90] A. O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt, “Study of avalanche breakdown and impact ionization in 4H silicon carbide,” Journal of Electronic Materials, vol. 27, no. 4, pp. 335-341, 1998. https://doi.org/10.1007/s11664-998-0411-x
[91] A. O. Konstantinov, N. Nordell, Q. Wahab, U. Lindefelt, “Temperature dependence of avalanche breakdown for epitaxial diodes in 4H silicon carbide,” Applied Physics Letters, vol. 73, pp. 1850-1852, 1998. https://doi.org/10.1063/1.122303
[92] M. Bakowski, “Status and Prospects of SiC Power Devices,” in: Advancing Silicon Carbide Electronics Technology I, K. Zekentes and K. Vasilevskiy, eds., Millersville: Materials Research Forum LLC, 2018, pp. 191-236.
[93] M. Bhatnagar, P. K. McLarty, B. J. Baliga, “Silicon-carbide high-voltage (400 V) Schottky barrier diodes,” IEEE Electron Device Letters, vol. 13, no. 10, pp. 501-503, 1992. https://doi.org/10.1109/55.192814
[94] A. Itoh, T. Kimoto, H. Matsunami, “High performance of high-voltage 4H-SiC Schottky barrier diodes,” IEEE Electron Device Letters, vol. 16, no. 6, pp. 280-282, 1995. https://doi.org/10.1109/55.790735
[95] A. Itoh, T. Kimoto, H. Matsunami, “Excellent reverse blocking characteristics of high-voltage 4H-SiC Schottky rectifiers with boron-implanted edge termination,” IEEE Electron Device Letters, vol. 17, no. 3, pp. 139-141, 1996. https://doi.org/10.1109/55.485193
[96] Y. Jiang, W. Sung, X. Song, H. Ke, S. Liu, B. J. Baliga, A. Q. Huang, E. Van Brunt, “10kV SiC MPS diodes for high temperature applications,” in 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016.
[97] “CoolSiC™ Automotive Discrete Schottky Diodes ” Infenion Application Note; information on www.infineon.com
[98] M. Holz, G. Hultsch, T. Scherg, R. Rupp, “Reliability considerations for recent Infineon SiC diode releases,” Microelectronics Reliability, vol. 47, no. 9, pp. 1741-1745, 2007. https://doi.org/10.1016/j.microrel.2007.07.031
[99] Information on https://www.wolfspeed.com
[100] D. Stephani, P. Friedrichs, “SILICON CARBIDE JUNCTION FIELD EFFECT TRANSISTORS,” International Journal of High Speed Electronics and Systems, vol. 16, no. 03, pp. 825-854, 2006. https://doi.org/10.1142/s012915640600403x
[101] P. A. Ivanov, N. S. Savkina, V. N. Panteleev, V. E. Chelnokov, “Junction field-effect transistors based on 4H-silicon carbide,” Institute of Physics Conference Series, 137. pp. 593-595, 1994.
[102] P. Sannuti, X. Li, F. Yan, K. Sheng, J. H. Zhao, “Channel electron mobility in 4H SiC lateral junction field effect transistors,” Solid-State Electronics, vol. 49, no. 12, pp. 1900-1904, 2005. https://doi.org/10.1016/j.sse.2005.10.027
[103] H. Mitlehner, W. Bartsch, K. O. Dohnke, P. Friedrichs, R. Kaltschmidt, U. Weinert, B. Weis, D. Stephani, “Dynamic characteristics of high voltage 4H-SiC vertical JFETs,” in 11th International Symposium on Power Semiconductor Devices and ICs. ISPSD’99 Proceedings 1999, pp. 339-342.
[104] P. Friedrichs, H. Mitlehner, K. O. Dohnke, D. Peters, R. Schorner, U. Weinert, E. Baudelot, D. Stephani, “SiC power devices with low on-resistance for fast switching applications,” 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings, pp. 213-216, 2000. https://doi.org/10.1109/ISPSD.2000.856809
[105] H. Onose, A. Watanabe, T. Someya, Y. Kobayashi, “2 kV 4H-SiC Junction FETs,” Materials Science Forum, vol. 389-393, pp. 1227-1230, 2002. doi:10.4028/www.scientific.net/msf.389-393.1227
[106] J. H. Zhao, K. Tone, X. Li, P. Alexandrov, L. Fursin, M. Weiner, “3.6 mΩ·cm2, 1726 V 4H-SiC normally-off trenched-and-implanted vertical JFETs,” in ISPSD ’03. IEEE 15th International Symposium on Power Semiconductor Devices and ICs, 2003.
[107] Y. Li, P. Alexandrov, J. H. Zhao, “1.88-mΩ·cm2 1650-V Normally on 4H-SiC TI-VJFET,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1880-1886, 2008. https://doi.org/10.1109/ted.2008.926678
[108] I. Sankin, D. C. Sheridan, W. Draper, V. Bondarenko, R. Kelley, M. S. Mazzola, J. B. Casady, “Normally-Off SiC VJFETs for 800 V and 1200 V Power Switching Applications,” Proceedings of 20th International Symposium on Power Semiconductor Devices and IC’s, 18-22 May 2008, pp. 260-262, https://doi.org/10.1109/ISPSD.2008.4538948
[109] Information on https://unitedsic.com
[110] A. Suzuki, H. Ashida, N. Furui, K. Mameno, H. Matsunami, “Thermal Oxidation of SiC and Electrical Properties of Al–SiO2–SiC MOS Structure,” Japanese Journal of Applied Physics, vol. 21, no. Part 1, No. 4, pp. 579-585, 1982. https://doi.org/10.1143/jjap.21.579
[111] J. N. Shenoy, J. A. Cooper, M. R. Melloch, “High-voltage double-implanted power MOSFET’s in 6H-SiC,” IEEE Electron Device Letters, vol. 18, no. 3, pp. 93-95, 1997. https://doi.org/10.1109/55.556091
[112] T. Ito, “Direct Thermal Nitridation of Silicon Dioxide Films in Anhydrous Ammonia Gas,” Journal of The Electrochemical Society, vol. 127, no. 9, pp. 2053, 1980. https://doi.org/10.1149/1.2130065
[113] H. Hwang, W. Ting, B. Maiti, D. L. Kwong, J. Lee, “Electrical characteristics of ultrathin oxynitride gate dielectric prepared by rapid thermal oxidation of Si in N2O,” Applied Physics Letters, vol. 57, no. 10, pp. 1010-1011, 1990. https://doi.org/10.1063/1.103550
[114] H.-f. Li, S. Dimitrijev, H. B. Harrison, D. Sweatman, “Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing,” Applied Physics Letters, vol. 70, no. 15, pp. 2028-2030, 1997. https://doi.org/10.1063/1.118773
[115] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, J. W. Palmour, “Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide,” IEEE Electron Device Letters, vol. 22, no. 4, pp. 176-178, 2001. https://doi.org/10.1109/55.915604
[116] G. Gudjonsson, H. O. Olafsson, F. Allerstam, P. A. Nilsson, E. O. Sveinbjornsson, H. Zirath, T. Rodle, R. Jos, “High field-effect mobility in n-channel Si face 4H-SiC MOSFETs with gate oxide grown on aluminum ion-implanted material,” Electron Device Letters, IEEE, vol. 26, no. 2, pp. 96-98, 2005. https://doi.org/10.1109/LED.2004.841191
[117] “Cree Launches Industry’s First Commercial Silicon Carbide Power MOSFET; Destined to Replace Silicon Devices in High-Voltage Power Electronics,” JANUARY 17, 2011; information on https://www.cree.com
[118] J. W. Palmour, L. Cheng, V. Pala, E. V. Brunt, D. J. Lichtenwalner, G. Y. Wang, J. Richmond, M. O’Loughlin, S. Ryu, S. T. Allen, A. A. Burk, C. Scozzie, “Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV,” in IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2014, https://doi.org/10.1109/ispsd.2014.6855980
[119] G. Liu, “Silicon carbide: A unique platform for metal-oxide-semiconductor physics,” Applied Physics Reviews, vol. 2, pp. 021307, 2015. https://doi.org/10.1063/1.4922748
[120] S. Dimitrijev, “SiC power MOSFETs: The current status and the potential for future development,” in IEEE 30th International Conference on Microelectronics (MIEL), 9-11 Oct. 2017, pp. 29-34, https://doi.org/10.1109/MIEL.2017.8190064
[121] R. Singh, “HIGH POWER SIC PIN RECTIFIERS,” International Journal of High Speed Electronics and Systems, vol. 15, no. 04, pp. 867-898, 2005. https://doi.org/10.1142/S0129156405003442
[122] N. Ramungul, V. Khemka, T. P. Chow, M. Ghezzo, J. W. Kretchmer, “Carrier Lifetime Extraction from a 6H-SiC High Voltage p-i-n Rectifier Reverse Recovery Waveform,” Materials Science Forum, vol. 264-268, pp. 1065-1068, 1998. https://doi.org/10.4028/www.scientific.net/msf.264-268.1065
[123] M. E. Levinshtein, J. W. Palmour, S. L. Rumyantsev, R. Singh, “Forward current-voltage characteristics of silicon carbide thyristors and diodes at high current densities,” Semiconductor Science and Technology, vol. 13, no. 9, pp. 1006-1010, 1998. https://doi.org/10.1088/0268-1242/13/9/007
[124] P. A. Ivanov, M. E. Levinshtein, K. G. Irvine, O. Kordina, J. W. Palmour, S. L. Rumyantsev, R. Singh, “High hole lifetime (3.8 [micro sign]s) in 4H-SiC diodes with 5.5 kV blocking voltage,” Electronics Letters, vol. 35, no. 16, pp. 1382, 1999. https://doi.org/10.1049/el:19990897
[125] P. Grivickas, A. Galeckas, J. Linnros, M. Syväjärvi, R. Yakimova, V. Grivickas, J. A. Tellefsen, “Carrier lifetime investigation in 4H–SiC grown by CVD and sublimation epitaxy,” Materials Science in Semiconductor Processing, vol. 4, no. 1-3, pp. 191-194, 2001. https://doi.org/10.1016/s1369-8001(00)00133-5
[126] P. Grivickas, J. Linnros, V. Grivickas, “Free Carrier Diffusion Measurements in Epitaxial 4H-SiC with a Fourier Transient Grating Technique: Injection Dependence,” Materials Science Forum, vol. 338-342, pp. 671-674, 2000. https://doi.org/10.4028/www.scientific.net/msf.338-342.671
[127] J. Zhang, L. Storasta, J. P. Bergman, N. T. Son, E. Janzén, “Electrically active defects in n-type 4H–silicon carbide grown in a vertical hot-wall reactor,” Journal of Applied Physics, vol. 93, no. 8, pp. 4708-4714, 2003. https://doi.org/10.1063/1.1543240
[128] L. Storasta, H. Tsuchida, “Reduction of traps and improvement of carrier lifetime in 4H-SiC epilayers by ion implantation,” Applied Physics Letters, vol. 90, no. 6, pp. 062116, 2007. https://doi.org/10.1063/1.2472530
[129] Y. M. Tairov, V. F. Tsvetkov, “Semiconductor Compounds AIVBIV,” in: Handbook on electrotechnical materials, Y. V. Koritskii, V. V. Pasynkov and B. M. Tareev, eds., Leningrad: Energomashizdat, 1988, p. 728. [in Russian]
[130] R. N. Ghoshtagore, R. L. Coble, “Self-Diffusion in Silicon Carbide,” Physical Review, vol. 143, no. 2, pp. 623-626, 1966.
[131] T. Hiyoshi, T. Kimoto, “Reduction of Deep Levels and Improvement of Carrier Lifetime in n-Type 4H-SiC by Thermal Oxidation,” Applied Physics Express, vol. 2, pp. 041101, 2009. https://doi.org/10.1143/apex.2.041101
[132] K. Kawahara, J. Suda, T. Kimoto, “Analytical model for reduction of deep levels in SiC by thermal oxidation,” Journal of Applied Physics, vol. 111, no. 5, pp. 053710, 2012. https://doi.org/10.1063/1.3692766
[133] S. H. Ryu, D. J. Lichtenwalner, M. O’Loughlin, C. Capell, J. Richmond, E. van Brunt, C. Jonas, Y. Lemma, A. Burk, B. Hull, M. McCain, S. Sabri, H. O’Brien, A. Ogunniyi, A. Lelis, J. Casady, D. Grider, S. Allen, J. W. Palmour, “15 kV n-GTOs in 4H-SiC,” Materials Science Forum, vol. 963, pp. 651-654, 2019. https://doi.org/10.4028/www.scientific.net/MSF.963.651
[134] H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P. Å. Nilsson, P. Bergman, P. Skytt, “Long Term Operation of 4.5 kV PiN and 2.5 kV JBS Diodes,” Materials Science Forum, vol. 353-356, pp. 727-730, 2001. https://doi.org/10.4028/www.scientific.net/msf.353-356.727
[135] P. Bergman, H. Lendenmann, P. Å. Nilsson, U. Lindefelt, P. Skytt, “Crystal Defects as Source of Anomalous Forward Voltage Increase of 4H-SiC Diodes,” Materials Science Forum, vol. 353-356, pp. 299-302, 2001. https://doi.org/10.4028/www.scientific.net/msf.353-356.299
[136] J. Q. Liu, M. Skowronski, C. Hallin, R. Söderholm, H. Lendenmann, “Structure of recombination-induced stacking faults in high-voltage SiC p–n junctions,” Applied Physics Letters, vol. 80, no. 5, pp. 749-751, 2002. https://doi.org/10.1063/1.1446212
[137] T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, K. Arai, “Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer,” Journal of Crystal Growth, vol. 271, no. 1-2, pp. 1-7, 2004. https://doi.org/10.1016/j.jcrysgro.2004.04.044
[138] J. J. Sumakeris, J. R. Jenny, A. R. Powell, “Bulk Crystal Growth, Epitaxy, and Defect Reduction in Silicon Carbide Materials for Microwave and Power Devices,” MRS Bulletin, vol. 30, no. 4, pp. 280-286, 2005. https://doi.org/10.1557/mrs2005.74
[139] J. J. Sumakeris, P. Bergman, M. K. Das, C. Hallin, B. A. Hull, E. Janzén, H. Lendenmann, M. J. O’Loughlin, M. J. Paisley, S. Y. Ha, M. Skowronski, J. W. Palmour, C. H. Carter Jr, “Techniques for Minimizing the Basal Plane Dislocation Density in SiC Epilayers to Reduce Vf Drift in SiC Bipolar Power Devices,” Materials Science Forum, vol. 527-529, pp. 141-146, 2006.https://doi.org/10.4028/www.scientific.net/msf.527-529.141
[140] W. Chen, M. A. Capano, “Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles,” Journal of Applied Physics, vol. 98, no. 11, pp. 114907, 2005. https://doi.org/10.1063/1.2137442
[141] Y. Bu, H. Yoshimoto, N. Watanabe, A. Shima, “Fabrication of 4H-SiC PiN diodes without bipolar degradation by improved device processes,” Journal of Applied Physics, vol. 122, no. 24, pp. 244504, 2017. https://doi.org/10.1063/1.5001370
[142] H. Niwa, J. Suda, T. Kimoto, “21.7 kV 4H-SiC PiN Diode with a Space-Modulated Junction Termination Extension,” Applied Physics Express, vol. 5, no. 6, pp. 064001, 2012. https://doi.org/10.1143/apex.5.064001
[143] Y. Luo, L. Fursin, J. H. Zhao, “Demonstration of 4H-SiC power bipolar junction transistors,” Electronics Letters, vol. 36, no. 17, pp. 1496, 2000. https://doi.org/10.1049/el:20001059
[144] M. Domeij, A. Konstantinov, A. Lindgren, C. Zaring, K. Gumaelius, M. Reimark, “Large Area 1200 V SiC BJTs with β>100 and ρON < 3 mΩ·cm2,” Materials Science Forum, vol. 717-720, pp. 1123-1126, 2012. https://doi.org/10.4028/www.scientific.net/msf.717-720.1123
[145] H. Miyake, T. Okuda, H. Niwa, T. Kimoto, J. Suda, “21-kV SiC BJTs With Space-Modulated Junction Termination Extension,” IEEE Electron Device Letters, vol. 33, no. 11, pp. 1598-1600, 2012. https://doi.org/10.1109/LED.2012.2215004
[146] A. Salemi, H. Elahipanah, K. Jacobs, C.-M. Zetterling, M. Ostling, “15 kV-Class Implantation-Free 4H-SiC BJTs With Record High Current Gain,” IEEE Electron Device Letters, vol. 39, no. 1, pp. 63-66, 2018. https://doi.org/10.1109/led.2017.2774139
[147] E. van Brunt, L. Cheng, M. J. O’Loughlin, J. Richmond, V. Pala, J. W. Palmour, C. W. Tipton, C. Scozzie, “27 kV, 20 A 4H-SiC n-IGBTs,” Materials Science Forum, vol. 821-823, pp. 847-850, 2015. https://doi.org/10.4028/www.scientific.net/msf.821-823.847
[148] N. Zabihi, A. Mumtaz, T. Logan, T. Daranagama, R. A. McMahon, “SiC Power Devices for Applications in Hybrid and Electric Vehicles,” Materials Science Forum, vol. 963, pp. 869-872, 2019. https://doi.org/10.4028/www.scientific.net/MSF.963.869
[149] “IS TESLA’S PRODUCTION CREATING A SIC MOSFET SHORTAGE?,” 2019; information on https://www.pntpower.com/is-teslas-production-creating-a-sic-mosfet-shortage