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Abstract. The performance of the multi-link system for mechanical press directly affects the 
performance of the press and the quality of the forgings. In order to improve the quality of forgings 
and enhance the design efficiency, a knowledge-guided particle swarm optimization design 
framework for multi-link systems is proposed, taking the cold and warm forging press as the 
research object. A knowledge database consisting of historical cases, rule knowledge and other 
knowledge was created. A reasoning machine consisting of retrieval and adoption was then built 
to determine the configuration of the multi-link system through case similarity calculations. A 
multi-link system optimization model was established for the selected configuration. To solve the 
optimization model, a knowledge-guided improved particle swarm optimization algorithm is 
developed, from which we obtain the optimized dimensions of the multi-link system. Comparing 
the results before and after optimization, we found that all the performance indexes have been 
improved to a certain extent, which proves the effectiveness of the knowledge-guided particle 
swarm optimization design framework for multi-link systems. Moreover, the framework facilitates 
the storage and reuse of design knowledge, which improves design efficiency and promotes design 
automation. 
Introduction 
Mechanical presses play a crucial role in forging and stamping processes. With the development 
of forging technology, in order to obtain near-net shape forgings, the development and use of cold 
forging technology has become the consensus of the manufacturing powerhouse. In the cold 
forging conditions, the fluidity of the metal is much lower than it in the hot forging conditions, so 
the cold forging forming is more sensitive to the forming speed, which requires “forming in 
accordance with the trend”, that is, the forming speed should be as low as possible, and the forming 
force should be much higher. Traditional crank-slide mechanical presses are difficult to meet the 
needs of current industrial production due to problems such as high speeds and difficulty in 
adjusting them [1]. Multi-link mechanical presses have received widespread attention and 
application in recent years due to their ability to approach the material being processed at slower, 
more uniform speeds and their quick-return characteristics. Their performance is mainly 
determined by the structural and dimensional parameters of the multi-link system. However, the 
multi-link systems for presses are complex and various. The conventional design methods depend 
on the experience of designers and a trial-and-error process, leading to low precision, extended 
design cycle and other problems.  

With the advancement of computer technology, data-based optimization design methods [2,3] 
and knowledge-based design methods [4,5] are gradually maturing. In recent years, there have 
been many researchers using data-based optimization design methods combined with computer 
simulation for the optimal design of multi-link systems. Dong [6] proposed an improved 
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optimization algorithm based on virtual prototype technology by considering the kinematics and 
dynamics performance indexes of the elbow-bar drive mechanism, and determined the optimal 
dimensions of the elbow-bar drive mechanism. Kütük [7] established an optimization model of a 
two-degree-of-freedom seven-link mechanism using a genetic algorithm to determine the optimal 
link lengths and applied kinetostatic approach to analyse crank torques and all the forces on the 
links. However, data-based optimization design methods require a large amount of data to support 
them. With the growing complexity of products, conventional intelligent optimization algorithms 
encounter challenges such as low efficiency and local optimization. Moreover, most of the studies 
have neglected the selection of the transmission configuration of the multi-link system, which is a 
difficult step to establish an optimization model. Selecting the most suitable transmission 
configuration requires more experience and theoretical knowledge of the designers. 

Knowledge-based design methods are good at aggregating and reusing design knowledge (e.g., 
expert experience, design manuals, industry specifications, etc.) for reasoning, judging, and 
decision-making to achieve automation, and intelligence in product design. However, they are 
seldom applied to the design of multi-link system of mechanical presses, and knowledge-based 
design methods are difficult to apply in practice due to incomplete knowledge, difficulties in 
knowledge acquisition and characterization, and limited adaptability. Therefore, it is imperative to 
integrate and improve these two methods for better application in practice [8,9]. 

Aiming at the above problems, this paper builds a design knowledge base and a reasoning 
machine to realize the rapid selection of transmission configuration for cold and warm forging 
presses through the case similarity calculation, and establishes an optimization model based on the 
elbow-bar transmission configuration determined by the above. A knowledge-guided improved 
particle swarm optimization algorithm is proposed to solve the optimization model. Then the 
optimized dimensional parameters of the multi-link system are obtained. The purpose of improving 
design efficiency, press performance and product quality is achieved. 
Rapid Selection of Transmission Configuration 
The selection of the transmission configuration is not only the first step of press design, but also 
the most critical step. The types of configurations are complex and varied. In order to select the 
most suitable transmission configuration, the theoretical knowledge and design experience of the 
designers are required to a higher level. In this paper, knowledge engineering technology is used 
to create a knowledge base and a reasoning machine to store and reuse historical cases and design 
experience to realize the rapid selection of transmission configurations. 

Knowledge base is to store the knowledge in some form of representation in the computer for 
subsequent recall. Multi-link systems design knowledge is varied and complex in form, which can 
be divided into case knowledge, rule knowledge and related information knowledge. The above 
knowledge is stored in an appropriate way to build a knowledge base for multi-link system design. 
The structure of knowledge base is shown in Fig. 1. 
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Fig. 1. Structure of multi-link systems design knowledge base. 

The reasoning machine is a bridge between the knowledge base and the design requirements. 
In this paper, firstly, input the design demand parameters, the reasoning machine retrieves whether 
there are similar cases. If there is, then adopt the case with the highest similarity, follow its 
transmission configuration, and improve the design of partial size parameters according to the 
design demand to form a new case. If an identical case exists, the case is used directly. The 
reasoning process for the transmission configuration of the multi-link systems is shown in Fig. 2. 

 
Fig. 2. Reasoning process for the transmission configuration of the multi-link systems. 

The main technical parameters to be entered for case retrieval include: machine type, nominal 
pressure, slide stroke, nominal pressure stroke and process parameters. The case similarity formula 
based on the above parameters is as follows 

1
( , )
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Where S represents the similarity of cases, A, B represents different cases, the set of attributes 
of these two cases is (a1, a2, …, an), (b1, b2, …, bn), n represents the similarity of cases, and μi 
represents the weights, the effect of each attribute on the multi-link systems. 

Considering the richness of the cases in the case base, we set the similarity threshold to 0.6. If 
there are cases with similarity more than 0.6, they are considered similar. If the similarity of all 
cases is lower than 0.6, it is considered that there is no similar case. So, the transmission 
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configuration needs to be selected manually. With the continuous enrichment of the knowledge 
base, the accuracy and automation of the reasoning machine will be continuously improved. 

Take the main technical parameters of a cold forging press for near net shape as an example: 
Nominal pressure, 12500 kN; Nominal pressure stroke, 10mm; slide stroke, 400 mm; Maximum 
stroke rate of slide is 25SPM. After the case retrieval and adoption, according to the highest 
similarity case, the reasoning obtained the transmission configuration should be the elbow-bar 
mechanism of bias driving, which is the same as the original transmission configuration of this 
press, proving the validity of this reasoning mechanism. The transmission sketch of the elbow-bar 
driving mechanism is shown in Fig. 3. 

 
Fig. 3. Transmission sketch of the elbow-bar driving mechanism. 

Optimization Model of Elbow-Bar Driving Mechanism 
The kinematic model of the elbow-bar driving mechanism needs to be established firstly. Establish 
the coordinate system shown in Fig. 3. L1~L6 is the length of each link, and θ1~θ6 is the turning 
angle of each link. According to the closed vector method, three closed loops are selected as 
OABCO, ABDA and CBDEC, which can be obtained as: 
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From Eq. 2, Under the condition that the size of links is fixed, there exist θ1, θ2, θ3, θ4, θ5, θ6, H 
a total of 7 variables, of which θ1 is the independent variable. In the limit of 6 equations, cancelling 
θ2, θ3, θ4, θ5, θ6, we can get the equation of H about θ1, denoted as H(θ1). 

Then we can get the kinematic equations of the elbow-bar driving mechanism are 
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where s, v, a are the displacement, velocity and acceleration of the slider, respectively.  
Once the kinematic model of the mechanism is complete, the corresponding optimization model 

can be established. The optimization vector is as follows: 
T T

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6[ , , , , , , , , ] [ , , , , , , , , ]X x x x x x x x x x L L L L L L a b e= = . (4) 

In order to establish the constraint equations and objective functions, it is necessary to take into 
account the structure of the multi-link system, the transmission performance and the characteristics 
of the cold and warm forging process. 

As can be seen from Fig. 3, there is a crank-rocker mechanism in the driving mechanism. The 
constraint functions for establishing the crank rock mechanism are 
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In order to ensure good transmission performance of the mechanism, it is necessary to limit the 
range of transmission angle between two limit positions. Establish the constraint functions g7(X), 
g8(X) for the pole drive angle. 
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Where γmin, γmax is the allowable minimum and maximum transmission angle between two limit 
positions, generally take γmin = 45° and γmax = 135°. 

Slider stroke is one of the main technical parameters of the press, which should be controlled 
within a certain error range at the design stage. Therefore, in this paper, the slider stroke error is 
constrained to be within ±1%, and the constraint functions g9 (X), g10 (X) are established. 

9 max min

10 max min

( ) 1.01 0
( ) 0.99 0

g X H H s
g X s H H

= − − ≤
 = − + ≤

. (7) 

The establishment of the optimization objective function needs to take into account the motion 
curve of the slider and the maximum input torque of the eccentric gear. 

The low speed and smooth motion of the slide can make the material uniformly stressed during 
the forming process and improve the quality of forgings. In addition, lower slider speeds mean less 
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input torque for the eccentric gear. Therefore, the minimization of the maximum speed and 
maximum acceleration of the slider within the nominal pressure stroke is taken as optimization 
objectives. The objective functions are 

1 h( )  | |sf X ν ==  (8) 

2 [0,h]( ) max | |sf X a ∈= . (9) 

Where h is the displacement of the slide when it first contacts the workpiece, that is, the nominal 
pressure stroke.  

At the same time, in order to increase the work efficiency, the return time should be reduced, 
that is, the quick-return characteristic should be strengthened. The objective function is 

3 up( )f X t= . (10) 

Where tup is the return time of slider. 
Combining all objective functions and taking the constraint function as penalty terms, the total 

objective function is established as: 
3 10
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i j j
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Where wi are the weights of each optimization objective, and w1+w2+w3 =1; fimin are the 
estimated optimal values for each optimization objective, so that the values of the three 
optimization objectives are of the same order of magnitude; γj is the penalty factor 

Any kinematic and optimization models of the transmission configuration will be stored as 
knowledge in the knowledge base. This avoids repeated modeling and improves the design 
efficiency in the subsequent similar case designs. 
Knowledge-Guided Particle Swarm Optimization  
In this paper, the particle swarm optimization algorithm is used to solve the optimization model, 
in order to improve the optimization efficiency, this paper proposes a knowledge-guided improved 
particle swarm optimization algorithm. And the following optimization strategies are proposed. 

Firstly, this paper adopts a hierarchical case knowledge-guided particle population initialization 
strategy by making full use of historical similar cases. The aim is to reduce the number of iterations 
and to improve the local optimization accuracy while making the algorithm capable of global 
search. 

For the characteristics of the transmission configuration combined with the actual production 
situation, set the upper and lower limits of each size parameter ximax, ximin (i=1,2,3...9), to determine 
the global optimization space for the 

1min 1max 2min 2max 3min 3max 4min 4max 5min 5max
T

6min 6max 7min 7max 8min 8max 9min 9max

[ , ; , ; , ; , ; , ;
, ; , ; , ; , ; ]

D x x x x x x x x x x
x x x x x x x x
=

. (12) 

According to the similar historical cases (similarity greater than 0.6), obtained in the 
transmission configuration reasoning stage, the maximum and minimum values of each design 
variable in the similar historical cases with the same transmission configuration are taken as sximax, 
sximin (i=1,2,3...9), and thus the local optimization space is determined as 



Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 538-547  https://doi.org/10.21741/9781644903254-58 
 

 
544 

1 1min 1max 2min 2max 3min 3max 4min 4max 5min 5max
T

6min 6max 7min 7max 8min 8max 9min 9max

[ , ; , ; , ; , ; , ;
, ; , ; , ; , ; ]

D sx sx sx sx sx sx sx sx sx sx
sx sx sx sx sx sx sx sx

=
. (13) 

If the number of similar historical cases is m and the particle swarm population size is n, the 
above m historical cases are used as m population initial solutions, and 0.6n-m population initial 
solutions are taken to be randomly generated in the local optimization space D1, and the remaining 
0.4n population initial solutions are randomly generated in D-D1. So that the algorithm has global 
search capability while improving the local optimization accuracy. 

If there are few similar cases in the case base to generate local optimization intervals or lack of 
practical reference value, it is necessary to judge whether to adjust the global optimization space 
by oneself, and carry out random initialization of all particle `populations in this global 
optimization space. 

Then, the particle iteration process is guided by the sensitivity knowledge of each optimization 
variable. In the particle swarm optimization algorithm, the particles find the global optimal 
solution by continuously updating their position and velocity, and its particle iteration formula is 

1 1 2 2( 1) ( ) ( ( )) ( ( ))
( 1) ( ) ( 1)

i i i i i i

i i i

v t v t c r pb x t c r gb x t
x t x t v t

λ+ = + − + −
 + = + +

. (14) 

Where v, x are the velocity and position of the particle, respectively; t is the number of iterations; 
λ is the inertia weight; c1 is the self-learning factor; c2 is the social learning factor; r1, r2 are the 
random numbers between (0,1); pbi and gbi are the positions of the individual and global guides 
for particle i. 

According to the objective function and global optimization space of elbow-bar driving 
mechanism, the sobol method is applied to perform parameter sensitivity analysis. The parameter 
sensitivity vector is obtained as 

1 2 3 4 5 6 7 8 9[ , , , , , , , , ]sen x x x x x x x x xV S S S S S S S S S= . (15) 

where Sxi is the sensitivity of the objective function to each optimization variable xi (i=1,2,3...9). 
Based on the above knowledge of parameter sensitivity, the particle iteration formula is 

dynamically updated to improve the search direction and step size. Firstly, the particles are guided 
to iterate in the direction of high sensitivity variables by updating the important parameters λ, c1, 
c2 as 
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Where λmax, λmin are the maximum and minimum values of the inertia weights; c1max, c1min, c2max, 
c2min are the maximum and minimum values of the corresponding learning factors, respectively. 

Meanwhile, the particles should be made to search quickly in the direction of low sensitivity 
variables with a larger step size while reducing the step size in the direction of high sensitivity 
variables in order to improve the algorithm's optimization ability during iteration. the iteration 
method is as follows 
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Fig. 4 shows the knowledge-guided particle swarm optimization process. The optimization 
process is as follows. 

Step 1: Determine the global and local optimization intervals, and initialize the particle 
population hierarchically in different intervals, using the historical similar cases as a guide; 

Step 2: Iterate according to the particle iteration strategy guided by the sensitivity knowledge 
to update the position and velocity of each particle. Then, calculate the fitness of each particle 
based on the knowledge of constraints and objective functions; 

Step 3: update the historical optimal positions of particles themselves and population, as well 
as the main parameters of the algorithm, such as the inertia weight λ; 

Step 4: Stop iteration when the end condition is met, the optimization results are processed and 
outputted. The design results are stored in the example knowledge base to further enrich and 
improve the knowledge base. 

  
Fig. 4. Knowledge-guided particle swarm optimization process. 

Optimization Result 
Based on the above optimization model and the knowledge-guided particle swarm optimization 
algorithm, an optimization program is written in MATLAB to perform the optimization 
calculations. In order to facilitate the manufacturing and accuracy testing of the link system in 
engineering practice, the optimization results are rounded off and the optimized links system 
parameters are compared with the original links system parameters, as shown in Table 1 below. 

 
Table 1. Optimization results of the elbow-bar driving mechanism [mm]. 

 L1 L2 L3 L4 L5 L6 a b c 
Initial 205 1720 610 720 1930 845 570 1500 -15 

Optimal 260 1725 705 545 1900 920 760 1550 -28 
 
Through kinematic analysis, we can get different curves of the slider. Comparing the slider 

curves before and after optimization, the optimized results are better than the original parameters 
as shown in Fig. 5. 
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Fig. 5. Kinematics curve of slider. 

The position of the lower dead center is shifted to the right, the motion curve is smoother in the 
forming stage. It meets the process requirements of low and smooth forming speed and long 
holding time for cold and warm forging, which is conducive to improving the quality of forgings. 

The main technical indexes of the elbow-bar driving mechanism of the cold and warm forging 
press before and after optimization are shown in Table 2. 

 
Table 2. Main technical indexes of the elbow-bar driving mechanism . 

Main technical indexes Initial Optimal optimzation 
rate 

Stroke [mm] 411.11 392.12 29.07% 
Total height [mm] 2212 2164 2.17% 

Velocity on the height of 25 mm [mm/s] 152.58 79.06 47.83% 
Maximum acceleration during the 

nominal stroke [mm/s2] 645.40 576.93 10.61% 

Eccentric gear input torque [N·m] 728584 377515 48.19% 
Slider return time [s] 0.71 0.62 12.68% 

 
As can be seen from Table 2, after the optimization of the knowledge-guided particle swarm 

algorithm, not only the motion curve of the mechanism is improved, but also its total height, the 
input torque of the eccentric gears is reduced, and the quick-return characteristics are also 
improved. The above analysis and data show that the knowledge-guided particle swarm algorithm 
can effectively optimize the size of the multi-link system to achieve the purpose of improving the 
performance of the press and the quality of forgings. 
Summary 
Based on the knowledge engineering technology, the knowledge base of multi-link systems design 
and the related reasoning machine are built, and the rapid selection of the transmission 
configuration for the designed press is realized. According to the elbow-bar driving mechanism 
obtained by reasoning, its kinematic model and optimization model are established, and the 
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knowledge-guided improved particle swarm optimization algorithm is proposed to solve the 
optimization model. After optimization, all the kinematic performance indexes of the slider are 
optimized to different degrees and the maximum input torque is reduced. Meanwhile, the method 
presented in this paper facilitates the accumulation and transfer of design knowledge. The models 
and equations established for each design will be classified and stored in the knowledge base so 
that they can be used for subsequent design of similar cases to avoid repetitive work. With the 
gradual enrichment of the knowledge base, the accuracy and efficiency of the optimization design 
method proposed in this paper will be gradually improved. 
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