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Abstract. Ensuring the quality of extrusion product necessitates meticulous die design, typically 
achieved through simulation iterations and/or experimental trials. However, this process is not only 
time-consuming but also costly. Despite substantial research utilizing historical data and finite 
element analysis (FEA) to elucidate design guidelines and principles, and the existence of 
numerous empirical equations guiding die design, it remains more of an art reliant on the designer's 
experience. In contrast, Deep Neural Networks (DNNs) have the capability to capture design 
experience with appropriately defined inputs and outputs, transforming it into abstract features for 
further application. With the advancement of DNNs, the automatic generation of precise die 
designs has become achievable. Several research studies have been undertaken to enhance die 
design through the application of DNNs, particularly Convolutional Neural Networks (CNNs). 
CNNs, a machine learning method commonly applied to extract information from images, have 
been utilized due to the intricate nature of die design. Given the inherent characteristics of DNNs, 
a significant challenge in incorporating DNNs into die design lies in devising a scheme to abstract 
3D die designs for defining inputs without loss of information. Various methods exist for handling 
3D objects, such as point clouds or projecting 3D objects into 2D depth graphs. Nonetheless, most 
of these methods prove challenging to implement effectively in the realm of die design. Another 
challenge stems from the overall complexity of the extrusion die. While most research has focused 
on automatically designing specific features of the die, such as the location or shape of portholes, 
there have also been data-driven studies attempting to generate entire die designs using historical 
data. This paper aims to review the status of the application of DNNs in hot extrusion die design 
and explore the further potential in this field.  
Introduction  
Extrusion stands out as one of the most iconic metal forming techniques in modern industries, 
finding widespread applications in architecture, construction, display equipment, electrical 
systems, and various sectors of industrial and transportation fields [1]. This metal-forming process 
involves pushing a long cylindrical billet within a closed cavity through a die with the desired 
cross-section. The precision of the die is a critical factor influencing the quality of the final product. 
While other essential parameters like pressure and temperature play a role, die design emerges as 
the foremost consideration for ensuring product quality. 

Currently, finite element analysis (FEA) remains the mainstream approach for die design. Once 
a die design is successfully simulated, experiments can be conducted, and adjustments to the die 
are made based on the results. However, this process involves several iterations, proving to be both 
time-consuming and costly. Despite extensive research leveraging historical data and FEA to 
establish design guidelines and principles, die design still relies heavily on the experience of the 
designer, making it more of an art than an analytical science. 
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In contrast, DNNs have shown promise in capturing design experience by translating it into 
abstract features for practical applications [2]. With advancements in DNNs, the automatic 
generation of precise die designs has become achievable. Numerous research studies have explored 
enhancing die design through the application of DNNs, with a particular focus on CNNs, a machine 
learning method commonly used for extracting information from images [3]. CNNs prove 
beneficial due to the intricate nature of die design. 

Despite the potential advantages, incorporating DNNs into die design presents significant 
challenges. One major hurdle involves devising a scheme to abstract 3D die designs for defining 
inputs without losing information. While various methods exist for handling 3D objects, such as 
point clouds or projecting 3D objects into 2D depth graphs, effectively implementing them in the 
realm of die design has proven challenging. Additionally, the overall complexity of the extrusion 
die poses another challenge. Most research has concentrated on automatically designing specific 
features of the die, such as the location or shape of portholes [4]. Still, there have been data-driven 
studies attempting to generate entire die designs using historical data [5]. 

This article aims to review the current status of the application of DNNs in hot extrusion die 
design and explore their further potential in this field. 
Die Design Challenges  
The crux of a successful extrusion process lies in the intricacies of die design. While variables 
such as temperature and pressure also wield significant influence, these factors are often 
predetermined in practice. Achieving a straight final product or ensuring a uniform metal flow at 
a steady state necessitates the precision of die design. 

Presently, the prevailing method for die design unfolds as follows: Designers begin by tailoring 
an initial design to the product's profile using empirical equations and expertise, sometimes 
adjusting from existing designs if applicable. They then employ FEA to test structural integrity, 
iterating if necessary. Validation through real-world experimentation follows, with any disparities 
prompting further refinement. Once the flow is achieved uniform at steady state, the design process 
concludes, readying the die for implementation. 

The described method is notably laborious and time intensive, often stretching over months, 
particularly for inexperienced designers. Moreover, the execution of multiple sets of experiments 
adds to the overall costliness of this approach. The intricacies of die design give rise to a variety 
of guidelines and principles tailored to specific scenarios. However, many of these principles may 
conflict with each other, underscoring the experiential aspect of die design. Consequently, the 
quality of the final product is heavily reliant on the designer's experience and expertise. 

The knowledge possessed by die designers is often subjective and lacks a systematic structure, 
leaning more towards intuition than analytical knowledge. For instance, study suggests that die 
designers commonly reduce the bearing length at the tip of a leg to between 50% and 75% of the 
bearing in the rest of the leg to account for the greater relative perimeter [6]. However, the exact 
percentage reduction is subjective and varies among designers. Designers often intuitively 
determine an optimal percentage based on their experiences with similar dies. Therefore, finding 
effective way to leverage this experiential knowledge to guide future designs would be invaluable. 
Deep Neural Networks in Die Design 
The continuous advancement of Deep Neural Networks (DNN) is shaping a significant shift in 
uncovering latent knowledge, while remaining grounded in academic principles. Essentially, DNN 
can be understood as a detailed approach using stochastic gradient descent (SGD) to minimize 
errors [7]. This method has earned DNN a reputation for its ability to uncover hidden features and 
simplify complex knowledge, leading to their widespread adoption across various industries. 
Particularly, it finds notable applications in areas like strain analysis and crack prediction [8]. 
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The burgeoning potential of DNN is especially conspicuous in the domain of metal forming. 
Pioneering contributions by Zhou et al. [9] in successfully developing a surrogate model for the 
hot stamping process and by Liu et al. [10] in effectively harnessing DNN in sheet metal forming, 
underscore the expanding utility and applicability of DNN methodologies across various facets of 
industrial practice. 

Considering the intrinsic nature of extrusion dies, where the product profile is represented as a 
2D graph, the utilization of neural networks becomes imperative for handling graph-based data. 
Consequently, the CNN emerges as a pivotal player in contemporary automatic die design systems. 
Tailored for image processing, CNN employs filters and convolutional layers to autonomously 
learn hierarchical features, showcasing exceptional efficacy in tasks such as image recognition. 

However, the integration of DNNs into the realm of extrusion die design introduces unique 
challenges. Unlike dies used for stamping or sheet metal forming, extrusion dies involve multiple 
parts, complicating efforts to simplify their intricate 3D properties into 2D or 1D representations. 
This intricacy necessitates further exploration and refinement in the seamless integration of DNN 
methodologies to address the distinct challenges posed by extrusion die design, a pivotal avenue 
for future research and advancement in the field. 
Challenges in Incorporating DNNs into Die Design 
Although DNNs hold significant potential in the field of extrusion die design, they face an 
inevitable challenge: digitization. To effectively utilize DNNs, all aspects of a die design must be 
captured and represented in a suitable format. Currently, there are two primary methods for 
extrusion die design: one method involves representing all information in a Multiview graph, while 
the other employs computer-aided design (CAD) techniques. Fig. 1a and 1b provide examples for 
both cases, respectively. 

        
     a) 3D representation of Die design       b) Multiview representation of Die design 

Fig. 1. Two different representations of die design. 
There are two potential strategies for digitization 3D design emerge: 
1. Finding an abstract representation of 3D design. 
2. Finding a 3D representation that can capture most attributes.  

While these strategies have been extensively studied, primarily not for the analysis of extrusion 
die design, they offer valuable insights into the digitization of CAD models. 

Various methods exist to represent a 3D object as abstract vectors. For instance, Wu et al. [11] 
successfully translated CAD models into semi-natural language sequences (CAD sequences). 
They broke down the process of drawing a CAD model into step-by-step sequences, as illustrated 
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in Fig. 2. This approach, based on the logic of the CAD platform Onshape, was first introduced by 
Willis et al. [12] in Fusion 360 Gallery. A CAD model is formed step by step through "sketch" 
followed by "extrude". By generating such sequences for a dataset, a transformer-based 
autoencoder is trained to capture the embedded abstract features of CAD designs, translating them 
into a 256*1 latent vector. Inspired by this work, Jobczyk and Homann [13] successfully created 
CAD models from multi-view images. The process involves generating CAD sequences, 
producing latent vectors using DeepCAD as ground truth, generating Multiview graphs from CAD 
models, and training a CNN-based DNN to return a 256*1 vector as output. This method has 
proven effective in generating CAD sequences (representing CAD models) from Multiview 
graphs. 

 
Fig. 2. The CAD construction process used in DeepCAD (unit: mm). 

Medial axis transformation (MAT) is another technique employed in extrusion die design. The 
medial axis of an object refers to a set of points within the object, where each point serving as the 
center of a circle tangent to the object’s boundary at two nonadjacent points [14]. Prior to the 
emergence of DNN, MAT was applied in automatic extrusion die design, two representative 
product’s profiles are illustrated in Fig. 3. Lin [15] successfully utilized this method to analyze 
geometric aspects using MAT.  

 

    
Fig. 3. MAT representation of different extrusion profile. 

While MAT provides a valuable means of transforming the profile into a lower-dimensional 
representation, it does not offer a comprehensive solution for extrusion die design due to its 
limitation in addressing the entire 3D object. Despite this drawback, MAT has historically 
contributed to understanding and reasoning about certain geometric aspects relevant to extrusion 
die design. 

An alternative widely employed approach involves sampling points across the entire 3D object, 
known as a point cloud. This method utilizes a collection of data points in a 3D coordinate system, 



Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 511-518  https://doi.org/10.21741/9781644903254-55 
 

 
515 

where each point within the cloud signifies a specific spatial position, typically defined by its x, y, 
and z coordinates. In contrast to triangle meshes, point clouds do not necessitate the storage or 
maintenance of polygonal-mesh connectivity or topological consistency [16]. 

This method has demonstrated effectiveness in various studies; for instance, Lin et al. [17] 
utilized point clouds to represent 3D objects and train a surrogate model, a type of DNN designed 
to replace FEA in certain applications. Lin's approach proved capable of reconstructing 3D objects, 
however, achieving a more accurate representation often requires a substantial number of points, 
typically ranging from 2000 to 3000 for a solid representation. This quantity of points can be 
substantial as depicted in Fig. 4, leading to prolonged training times. 

 

 
Fig. 4. Different number of points represent a same ball. 

An alternative approach involves the use of 3D CNN to directly process 3D CAD data. Lee et 
al. [18] have employed this method to recognize features of 3D CAD models. While the results 
are promising in terms of feature recognition, it is noteworthy that existing literature 
predominantly focuses on classification and recognition tasks rather than generation using this 
method. 
Status of DNNs in Hot Extrusion Die Design 
Despite these aforementioned challenges, DNNs are beginning to make an impact in extrusion die 
design. However, owing to the regression-like attributes of DNNs, their current capability is 
primarily limited to providing predictions based on available data. Given the precision 
requirements of die design, existing literature offers guidance for specific parts of the die or 
provides a preliminary design for further refinement. 

Llorca-Schenk et al. (2023) successfully analyzed the geometry of ports, including parameters 
such as port area, port perimeter, and die center to port center distance, utilizing various machine 
learning methods. Some variables they used to decompose a port is shown in Fig. 5. However, this 
analysis relied on a substantial amount of data from successfully designed porthole dies, 
specifically those made of H13 hot work steel with aluminum alloy 6063 billet material, which 
can be hard to collect.  

Zangara et al. [19] decomposed critical attributes of extrusion die design into 12 parameters for 
digitization, e.g., Pocket width is called Rpc, Bridge length is called Hbr. The whole die is then 
parametrized with such decomposition and then can be used for training. Authors analyzed the 
correlations among these parameters using a support vector machine (SVM). 
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Fig. 5. Variables that been used to describe a porthole die [4]. 

In contrast to previous studies that focused predominantly on specific parts (ports) or aimed to 
assist in die design, Yu et al. (2023) successfully employed DNNs to design entire extrusion dies. 
By analyzing a large number of successful die designs and incorporating prior analytical studies 
on porthole die design, they identified porthole geometries and bearing length as the most crucial 
parameters. Porthole geometries were categorized based on shape and the number of portholes. 
For bearing length, an empirical equation with several constants was employed, with the values of 
these constants varying with changes in the profile's geometries. Different scenarios were 
categorized, and CNN was used to detect and locate them, reporting a set of constants. Bearing 
length was then calculated using these constants. Although numerous parameters require 
consideration, their results provide a robust outcome at steady state, demonstrating the 
effectiveness of their DNN-based approach in designing entire extrusion dies. 
Potential of DNNs in Hot Extrusion Die Design 
Incorporating DNNs into die design poses significant challenges, since emulating the expertise of 
experienced designers demands a substantial dataset of successful die designs for supervised 
learning. Yet, the intricacies of die design, considered a company's proprietary knowledge, hinder 
the collection of such data. Compounded by the messy nature of industrial data, primarily tailored 
for in-house understanding, the lack of a standardized approach across the industry further 
complicates the process. Consequently, the current study is constrained to specific die features or 
a narrow profile range due to these limitations. 

The prospect of constructing a large-scale neural network akin to ChatGPT for die design 
becomes feasible if a standardization effort succeeds. However, establishing such a standard 
proves challenging. An alternative approach involves exploring semi-unsupervised learning, akin 
to control theory or reinforcement learning with feedback. While this method requires FEA to 
provide feedback, potentially time-consuming in practice, the application of surrogate models 
presents a viable solution to meet time constraints. Attar et al. [20] has successfully developed an 
automated platform for stamping die design. This approach acknowledges the intricate nature of 
die design while leveraging DNNs for improved automation and innovation. 
Summary  
Until now, extrusion die design has retained its status as more of an art form, relying heavily on 
designers' experience to create initial editions. Subsequent iterations involve the use of FEA and 
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experiments to test design solidity, a process notorious for its time and cost intensiveness. Despite 
meeting analytical standards, designs frequently fall short of delivering robust results. 

In efforts to mitigate design costs, DNNs are increasingly adapted in the realm of die design. 
Presently, studies predominantly concentrate on optimizing specific die components, such as 
porthole positioning or geometry, and bearing length design. Some endeavors even attempt to 
holistically design the entire die by segmenting it into models, selected based on product profiles. 

However, integrating DNNs into extrusion die design encounters numerous challenges. The 
intricate nature of extrusion dies, comprising multiple complex parts, complicates the acquisition 
of concise parameterizations encompassing all geometric information for intricate 3D objects. 
Therefore, devising methods to digitize die designs for training purposes becomes imperative. 
Additionally, training DNNs necessitates vast quantities of consistent data, a hurdle exacerbated 
by the customized nature of die designs, often tailored for in-house comprehension. The 
establishment of a standard for extrusion die design could facilitate the creation of a comprehensive 
database for training purposes. 
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