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Abstract. Synergies between neural networks and traditional surrogate modelling techniques have 
emerged as the forefront of data-driven engineering. Neural network-based surrogate models, 
trained on carefully selected experimental data or high-fidelity simulations, can predict behaviours 
of complex systems with remarkable speed and accuracy. This review examines the current state 
and recent developments in neural surrogate technologies, highlighting their expanding roles in 
engineering design optimisation and generation. It also covers various feature engineering methods 
for representing 3D geometries, the principles of neural surrogate modelling, and the potential of 
emerging AI-driven design tools. While feature engineering remains a challenge, especially in 
parameterising complex designs for machine learning, recent advancements in code/language-
based representations offer promising solutions for digitalising various design scenarios. 
Moreover, the emergence of AI-driven design tools, including text-to-CAD models powered by 
large language models, enables engineers to rapidly generate and evaluate innovative design 
concepts. Neural surrogate modelling has the potential to transform engineering workflows. 
Continued research into geometric feature engineering, along with the integration of AI-driven 
design tools, will speed up the use of neural surrogate models in engineering designs. 
Introduction 
Engineering design is the systematic process of conceiving, developing, and optimising products 
or services to fulfil specific needs and requirements [1]. Traditionally, this process relies on 
physical prototyping, repetitive simulations and human intuition, often leading to a time-
consuming and potentially suboptimal outcomes. Advancements in machine learning (ML) 
technologies, particularly neural networks, are addressing longstanding challenges in this field by 
automating repetitive tasks [2], optimising designs for specific goals [3,4], and generating entirely 
new design concepts [5]. 

ML refers to the automatic mapping of underlying function(s) between input features and the 
desired output by optimising model parameters using observed data. ML models leverages 
probability theory to identify (learn) and approximate (fit) data distributions [6], enabling them to 
make predictions without explicit programming [7]. Feature engineering is a critical process in 
ML where raw data is transformed into meaningful features (inputs) to improve the performance 
and accuracy of the model [8]. It encompasses feature abstraction, which extracts meaningful 
patterns from complex raw data, and parameterisation, the process of defining and adjusting 
parameters of a model for optimal performance. In engineering contexts, feature engineering 
focuses on the abstraction and parametrisation of geometric information and performance-related 
attributes from relevant systems, processes or machines. 

Digital twins are virtual replicas of the real world, serving as a key driver of the Fourth Industrial 
Revolution. They use real-time data to simulate physical systems, identifying issues and enhancing 
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real-world performance [9]. For instance, Google Maps serves as the digital twin of the planet’s 
surface, enabling navigation and virtual exploration [10]. Engineering digital twins typically 
leverage existing computer-aided design (CAD), computer-aided engineering (CAE) and 
computer-aided manufacturing (CAM) tools, which are tailored to various stages of the product 
lifecycle. Surrogate modelling, which creates simplified mathematical approximations of complex 
systems, has emerged as a vital component of digital twins [11]. The superior speed and data 
efficiency of neural networks make neural surrogate modelling ideal for industrial design 
applications [12,13]. Its computational efficiency enables rapid exploration of high-dimensional 
design spaces, a significant advantage over traditional simulation-heavy design approaches [14]. 

Emerging AI-driven design tools are further transforming the engineering design cycle [2]. 
Cloud-based ML platforms are streamlining the development of neural surrogates for engineers 
[15,16]. Generative design software autonomously creates design options, guided by performance 
requirements and manufacturing constraints [17]. Additionally, text-to-CAD (TTC) models can 
convert natural language descriptions into CAD-ready geometries [18,19].  The synergy of these 
technologies enables rapid generation, evaluation and optimisation of engineering designs. 

This concise review aims to elucidate the frontier of neural surrogate technologies and their 
expanding applications in engineering design optimisation and generation. It explores different 
geometric feature engineering techniques, advancements in surrogate modelling for industrial 
design tasks, their integration with optimisation algorithms, and finally, capabilities of emerging 
AI-driven design tools. By examining the latest research developments in neural surrogate-driven 
engineering design, this paper offers insights into the future of this exciting field. 
Geometric Feature Engineering 
Geometric feature engineering involves the extraction, manipulation, and encoding of geometric 
properties into formats compatible with ML algorithms [8]. However, the lack of standardised, 
broadly applicable geometric feature engineering techniques has hindered the widespread adoption 
of ML in engineering. 

Both numerical and categorical scalar data can be directly fed into scalar-based machine 
learning methods like support vector machines without extensive feature engineering [7]. In 
contrast, 2D information, typically in the form of pixel images, is typically processed through 
machine vision techniques such as convolutional neural networks (CNNs) [7]. The digital 
representation of 3D data is more complex, with diverse methods employed without a standard 
approach. A common technique involves projecting 3D objects into 2D profiles, enabling the 
application of image-based machine learning techniques [3,14]. While 3D projections of CAD 
models were utilised in several deep learning studies [20,21], this image-based representation of 
3D shapes is often restricted to simple objects without internal features. 

Other computational techniques frequently used for representing 3D geometry include voxel-, 
point cloud-, mesh-based, and implicit representations. Fig. 1 illustrates these four 3D 
representation techniques’ depictions of the Stanford Bunny. Point clouds (Fig. 1(a)) are 
collections of points in 3D space, defined by their spatial positions (x, y, z) and sometimes other 
attributes (like colour) [16]. Voxel grids (Fig. 1(b)), on the other hand, resemble 3D versions of 
pixels and can be considered as quantised and fixed-sized point clouds [22]. As shown in Fig. 1(c), 
polygon meshes connect vertices with polygonal faces to form surfaces, often with additional 2D 
information mapped onto the triangular surfaces of the polygons [23,24]. In contrast to the explicit 
representations that capture geometric information in discretised formats, implicit representations 
use continuous, infinite-resolution functions (e.g., signed distance functions) to define a volume's 
occupancy field [3,5], as illustrated in Fig. 1(d). The recent use of neural networks to learn compact 
latent representations of implicit functions has made implicit neural representations more memory-
efficient and better suited for numerical optimisation [25]. Despite their prevalent use, those 



Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 493-502  https://doi.org/10.21741/9781644903254-53 
 

 
495 

position-based representations are incompatible with modern CAD software that models 
engineering components using sequential and parametric commands [5,26]. 

 
Fig. 1. Geometric representations of the Stanford bunny through explicit forms such as voxels 
(a), point cloud (b) and meshes (c), and implicit representations like signed distance fields (d) 

[25]. 
Given the rising prominence of large language models (LLMs) like ChatGPT, recent research 

in geometric feature engineering is pivoting towards code/language-based representations of 3D 
geometries [5]. These methods mainly encompass the boundary representation (BREP) techniques 
and CAD sequence-based representations, as shown in Fig. 2(a) and 2(b), respectively. The BREP 
format defines the boundary between the interior and exterior of a solid’s volume using a collection 
of connected surface segments (Fig. 2(a)), complemented by topological information that explains 
their adjacency relationships [27]. In contrast, most CAD programmes use command 
(construction) sequences to create models, as shown in Fig. 2(b). This parametric representation 
allows one to model complex geometries using several parameters, without manually building it 
up from scratch [26]. The BREP serves as an abstraction of the CAD command sequences [26]. 
While viewable in most CAD software, BREP files lack the parametric history needed for direct 
modification using those tools. Additionally, the vocabulary formed by CAD command sequences 
is analogous to natural language. This similarity has encouraged the exploration of Autoencoder 
(AE)-based Transformer networks to produce command sequences of novel 3D CAD designs, 
which can be directly edited by users [26]. Furthermore, fine-tuned LLMs can generate 
construction sequences of CAD models based on user prompt inputs. These sequences can then be 
imported into existing CAD software to construct the final 3D model [19]. 

AEs are neural-network architectures designed for unsupervised learning tasks, particularly 
focusing on dimensionality reduction and feature extraction [7]. During the encoding process, AEs 
automatically identify a user-specified number of features from the input data, transforming them 
into latent encodings. These encodings are then used to reconstruct the output information in the 
decoder stage [28]. In engineering design, AEs can function as geometric feature detectors, 
providing more insightful or nuanced ways to describe geometries than human-designed methods 
[7,29]. For example, a latent parameter extracted from an input 3D surface mesh might represent 
a combination of lean and sweep of a compressor blade in turbomachinery [28]. 

(a) Voxels (b) Point cloud (c) Meshes (d) Signed Distance Field

Signed distance value
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(a) Modified from Lambourne et al. 
[27] 

(b) Adapted from Willis et al. [30] 

Fig. 2. Code/text-based representation of 3D shapes – Boundary representation with its face-
adjacency graph (a); And CAD command (construction) sequence (b). 

Surrogate Modelling 
Surrogate modelling is a computational strategy that utilises intelligently sampled data to 
approximate complex mathematical models in unobserved regions of the design space [11]. Unlike 
purely data-driven methods, surrogate-based design optimisation can leverage data generated from 
simulations, thus overcoming the data scarcity issue common in engineering design. These models 
solely rely on the input-output behaviour of the true function, without consideration for its internal 
workings [1]. Modern design of experiment (DoE) methods, such as the Latin hypercube sampling, 
were utilised to ensure efficient data collection and maximised sampling uniformity across the 
design space [11,31]. 

Classic surrogate modelling techniques such as polynomial response surface model, Kriging, 
and radial basis functions incorporate statistical learning principles, but they do not engage in 
“learning” as comprehensively as modern ML algorithms [11]. Conversely, ML-based surrogates, 
particularly neural networks, are less confined by predefined mathematical structures and excel at 
dimensionality reductions for very high-dimensional and non-linear problems [12]. Multi-layer 
perceptron (MLP), a class of feed-forward neural networks, is especially suitable for surrogate 
modelling of complex non-linear problems in engineering design [12]. These networks excel at 
predicting and optimising both scalar performance metrics and 2D/3D physical fields [12,14]. 
Owing to their rapid evaluation speed, neural surrogates can significantly accelerate certain 
engineering design processes by eliminating the need for the repetitive evaluation of time-
consuming CFD or FEA codes [3,13]. 

Neural surrogate models have become 
instrumental in predicting the performance 
of parameterised engineering designs [13]. 
Parametric design variables, such as those 
defined for the aeroengine nacelle of a 
civilian airplane (Fig. 3), were commonly 
used as inputs for the neural networks that 
predict performance metrics [32,33]. Tejero 
et al. modelled the nacelle drag 
characteristics across the design space, and 
under different operating conditions, using MLP networks [32]. Similar MLP networks were also 
employed to estimate the coefficients of lift and drag, pitching moment, and the lift-to-drag ratio 
based on the angle of attack and flap configurations for experimental aeroplane designs [33]. 

Sketch 1 Extrude 1 Sketch 2

Extrude 2 Extrude 9

Fig. 3. Design variables used in the 
parametrisation of an aeroengine nacelle [32]. 
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Beyond parametric design inputs and outputs, surrogate models are increasingly embracing 
image-based representations [14,34]. Fig. 4 depicts an image-to-image surrogate model employing 
AEs [3], which maps input images to corresponding output images [28]. Attar et al. [14] and Zhou 
et al. [34] used Res-SE-U-Net based image-to-image models to predict blank’s thinning fields (as 
2D image) from die geometry and blank shape images. Comparative analyses indicate that image-
based neural surrogate models outperform their scalar-based counterparts in prediction accuracy, 
data efficiency, informativeness and generalisability [4,34,35]. 

In addition to images, neural 
surrogates can also process 3D 
input and output data [28,36]. 
For example, Pongetti et al. 
deployed a multi-level neural 
surrogate model to predict 
various quantities of interest, 
such as the static pressure field 
on turbomachinery compressor 
blades based on their 3D surface 
mesh input [28]. Moreover, 
Petrik et al. developed neural surrogate models for optimising open die forging processes [36]. 
These models accept the input of a 3D voxel mesh representing the pre-stroke geometry of the 
workpiece, along with a forging vector that defines the forging path. They output predictions of 
the recrystallisation and shape deformation of the corresponding workpiece in 3D space, both 
represented as voxel meshes. Results suggest that this system can accurately mimic simulations 
throughout the entire interpolation space [36]. 
Neural Surrogate-Driven Design Optimisation 
Industrial and scientific endeavours are fraught with design problems that require the development 
of novel systems or processes for improved performance and efficiency [37]. Traditional design 
optimisation methods adopt a “top-down” approach where designers iteratively adjust design 
variables to achieve pre-defined performance metrics [13], often relying on trial-and-error or 
empirical strategies [4]. Given that modern engineering is primarily driven by expensive computer 
simulations [38], this process typically involves a non-exhaustive exploration of the design space, 
frequently resulting in suboptimal design outcomes [13]. In comparison, neural surrogate-assisted 
design optimisation incurs significantly lower computational costs, allowing near-instant 
evaluations of designs [4,38]. The fast surrogate modelling enables the optimisation algorithm to 
iteratively search for the optimal point(s) within the design space starting from an initial 
configuration [1]. As the outcomes of these optimisation processes are unforeseen, this constitutes 
a “bottom-up” approach [13]. Moreover, for optimisation problems, neural surrogate modelling 
helps imposing various boundary conditions, such as manufacturing and geometric constraints, by 
directly modelling them within the surrogate [3,4]. Ultimately, highly accurate and generalisable 
neural surrogates pave the way to be integrated within full-function digital twins, enabling real-
time, multi-objective design optimisation [4]. 

Surrogate-driven design optimisation has been prevalent in aerodynamic design, encompassing 
aeroplane components [32,33], turbomachinery [28], flight envelopes [39], etc. Norgaard et al. 
determined the optimal flap settings and flap schedule for a research airplane by employing neural 
networks to predict performance metrics [33]. Leveraging predictions of quantities of interest from 
3D-to-3D neural surrogate models, Pongetti et al. iteratively refined the optimal geometry of 
turbine compressor blades with an evolutionary algorithm to solve the targeted optimisation 
problem [28]. Additionally, the optimal landing trajectory for a spacecraft was determined using 
gradient descent optimisation based on aerodynamic predictions from neural surrogates [39].  

Fig. 4. Image-to-image surrogate modelling driven by an 
autoencoder [3]. 
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Neural surrogate modelling also finds extensive application in the metal forming sector, 
particularly for optimising tooling design and process parameters vital to the cost and quality. Due 
to the intricate nature of these manufacturing processes, slight adjustments can result in significant 
changes in manufacturability metrics, rendering the traditional design process slow and error-
prone [4]. Sheet metal forming processes rely heavily on optimal blank shapes, but scalar-based 
surrogate models, limited by accuracy, robustness, generalisability and the data inefficiency, 
struggled in the modelling and optimising blank shapes [4,34]. Attar et al. leveraged non-
parametric neural surrogates capable of handling intricate morphing geometries, and gradient-
based algorithms, to optimise geometries of hot stamping dies and blank shapes for corners and 
bulkheads. These geometric adjustments driven by manufacturability predictions resulted in 
notable enhancements in component quality [3]. Furthermore, CrystalMind’s surrogate models for 
optimising open-die forging processes are coupled with a dual annealing-based optimisation 
algorithm, which iteratively adjusts the forging vector to achieve deformation and recrystallisation 
patterns that closely match target outcomes. The rapid feedback of these neural surrogates enables 
the optimisation process to finish much faster than with FEA simulations [36]. 
Emerging AI-driven Design Tools 
Digital transformation in engineering industries has primarily focused on surrogate modelling of 
engineering products and processes, frequently leveraging raw CAD and CAE data [16]. This 
approach has enabled faster design iterations and higher product quality [16], effectively 
addressing the slowness of traditional CAD and CAE tools [15]. Web-based platforms such as 
NeuralConcept and Monolith AI offer streamlined software solutions to engineers that facilitate 
surrogate-driven design evaluation and optimisation [15,16]. These enterprise AI infrastructures 
integrate the cutting-edge deep learning algorithms with a user-friendly interface into a modular 
platform, enabling users to rapidly create and scale up various types of surrogate models using 
cloud computing resources [15]. By minimising coding requirements and providing 
comprehensive guidance on ML, these end-to-end platforms make powerful machine learning 
tools accessible to mainstream engineers [16]. Industrial applications of these AI platforms 
demonstrate significant saving in engineering time. For instance, a car manufacturer slashed the 
development period of a new vehicle from five years to just one after adopting this solution [15]. 

Additionally, tools for generative topology optimisation, also known as generative design, have 
been introduced in leading CAD programmes [17]. This technology automates the creation and 
iterative modification of a component’s topology, based on user-defined performance 
requirements and manufacturing constraints [17]. Topology optimisation tools work by iteratively 
refining the geometry of a design until it converges to an optimal solution that satisfies all 
objectives and constraints. In comparison, generative topology optimisation produces multiple 
design choices that satisfy specified design requirements. More advanced versions even rank 
generated design options to facilitate user evaluation [17]. These tools are often integrated with 
CAE software for design evaluation, a process that neural surrogate modelling can greatly 
expedite. Some of them also incorporate CAM functionalities to impose design constraints [17]. 

Text-guided generative AI models that can produce 2D images, 3D geometries and sequences 
of programming languages, are quickly emerging in both academic and industrial sectors 
[18,40,41]. Text-to-image generators like the DALL-E series, Imagen and Midjourney, have been 
utilised to produce high-quality images of design concepts, especially in architecture [42]. 
Similarly, text-to-3D models generate various parameterised 3D geometries (point cloud [43], 
textured mesh [43], implicit neural radiance fields [44], etc.) from text input. These models are 
widely applicable in 3D content creation for gaming, virtual reality and industrial design [43]. TTC 
models, on the other hand, produce parametric command (construction) sequences that adhere to 
existing CAD file formats, making them directly importable into most CAD software [18,19,41]. 
As shown in Fig. 5(a), one TTC app facilitates parametric editing of CAD objects based on user’s 
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command prompts and drawing inputs [40], while another supports the generation of complex, 
fully-mated assemblies (Fig. 5(b)) [41]. Moreover, some TTC models offer “copilot” features like 
the autocompletion of CAD files [18]. These functionalities are derived from the models' deep 
understanding of both CAD file syntax and its correlation to 3D geometry. By training on open-
source or proprietary datasets of engineering designs, these models learn to effectively leverage 
historical design information to synthesise new designs [19]. Certain platform even allows for fine-
tuning of the pre-trained TTC models to users’ specific database [19], further bolstering the benefit 
of this AI infrastructure. These text-to-design tools enable novice users to exploit insights from 
past design data and assist experienced designers to quickly visualise and explore innovative 
design concepts. In near future, the capabilities of TTC models are expected match the LLMs that 
power them. This will unlock extraordinary geometric inference capabilities, transforming the way 
designers interact with complex shapes. With the incorporation of neural surrogate modelling, 
these generative AI models can instantly assess created designs, thereby intelligently guiding the 
optimisation of complex design cases. 

  
(a) CadifyAI [40] (b) GetLeo.ai [41] 

Fig. 5. AI-powered generation and modification of CAD parts and assemblies: Text prompts and 
drawing inputs allow for real-time model modification (a); Complex, fully-mated assemblies of 

engineering designs are generated from scratch using simple text instructions (b). 
As AI-powered design tools become more accessible, they are poised to transform numerous 

engineering practices. These tools are devised to augment the capabilities and efficiency of human 
designers, who remain the principal decision maker, instead of replacing them [45]. Looking 
ahead, future developments incline towards merging these technologies to create full-function 
digital twins that will intelligentise the design and manufacturing of engineering products. 
Summary 
This review represents a pioneering survey of how neural surrogate technologies can revolutionise 
reduced-order modelling, optimisation and generation of engineering designs. Despite challenges 
in geometric feature engineering for complex hardware designs, neural surrogate modelling stands 
out as a substantial advancement over traditional CAE methods. Neural surrogates empower the 
broader use of optimisation algorithms and enable the exploration of extensive design variations, 
potentially shortening design cycles and improving product performance. Furthermore, emerging 
AI-driven design tools and infrastructures are reshaping engineering practices, supporting 
engineers throughout the design process. Integration of neural surrogate modelling with these AI-
driven tools brings the realisation of comprehensive digital twins, a cornerstone of Industry 4.0 
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initiatives, closer to reality. The creation of comprehensive and accurate digital twins necessitates 
powerful modelling methods, thus underscoring the critical need to advance neural surrogate 
technologies. Future research into ingenious geometric feature engineering techniques, and the 
strategic integration of novel AI-driven design tools, is imperative for facilitating the widespread 
adoption of neural surrogate modelling across various engineering domains. 
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