
Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 444-455  https://doi.org/10.21741/9781644903254-48 
 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

444 

Roll pass design for round and square sections using  
an informed artificial neural network 

OVERHAGEN Christian1,a * and MARTIN Robert2,b  

1University of Duisburg-Essen, Faculty of Engineering, Institute for Technologies of Metals, 
Chair of Metallurgy and Metal Forming, Forsthausweg 2, 47057 Duisburg, Germany 

2University of Duisburg-Essen, Faculty of Engineering, Institute for Technologies of Metals, 
Forsthausweg 2, 47057 Duisburg, Germany 

achristian.overhagen@uni-due.de, brobert.martin@uni-due.de 

Keywords: Rod Rolling, Bar Rolling, Neural Networks, Roll Pass Design, Machine 
Learning, Custom Loss Function 

Abstract. Nowadays, the roll pass design process for hot rolling mills of full sections like round 
and square sections is carried out by FEM simulations or analytical calculations. Both techniques 
require a highly iterative method with numerous iterations required to determine a satisfying pass 
design solution. In the present work, a neural network is trained for the process of roll pass design 
for round and square sections. The steps of data generation and training are combined by the 
formulation of a custom loss function for the underlying physical problem. In this way, the neural 
network is informed about the metal forming problem, enabling the generation of the necessary 
training data to be carried out implicitly during training. This technique increases the flexibility 
and extensibility of the current approach, eliminating the necessity of external training data 
generation. The metal forming equations for the pass design problem are presented for the pass 
sequences round-oval-round, as well as square-diamond-square, which are included in custom loss 
functions for the neural networks. The prediction results are compared to analytical iterative 
calculations, indicating very good agreements. Therefore, multiple iterations and computation time 
can be saved when the new approach of pass design is applied. 
Introduction 
Roll Pass Design of full sections like round and square sections is a task which is carried out to a 
big extent within the mill building and rolling mill industries. Therefore, we seek for 
methodologies which allow this process to be completed fast and accurately. Classical approaches 
require numerous iterations, starting from simple initial conditions for the groove design, which 
are refined step by step to finally yield a satisfactory solution.  Balan et al. presented surrogate 
models for the flat rolling process based on neural networks [1] to increase the efficiency of 
numerical simulations. A new surrogate method for roll pass design was presented in [2], where 
an artificial neural network was trained with classically precalculated roll pass designs. There, the 
task was split into two parts, the data generation, and the training of a suitable neural network. The 
present approach follows a different route. Instead of utilizing a classical neural network with a 
default loss function provided by the machine learning framework (here: PyTorch [3]), we 
leverage the metal forming equations governing the pass design procedure as a custom loss 
function during training of the neural network. Therefore, the tedious and computationally 
expensive procedure of an iterative pre-calculation of the final pass design is no longer necessary. 
Instead, the synthetic data is generated on-the-fly during the training procedure. In the beginning, 
we only need to define the data range in which the neural network should be trained. Everything 
else will be handled by the loss function. 
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A roll pass design of square or round sections consists of a series of two-pass sequences, each 
consisting of an oval or diamond groove in the first pass (the so-called minor groove), and a round 
or square groove in the second pass (the so-called major groove). Usually, the sequence of major 
grooves in a pass design is predefined, and the task of the pass designer is to find the necessary 
geometries of the minor grooves. This is a highly iterative technique, requiring multiple 
evaluations of the same equations. In the present approach, we introduce a method to replace this 
procedure by direct prediction of the minor groove geometries by an artificial neural network. 
The analytical formulation of the pass design problem 
Since optimization techniques used for training of neural networks are generally based on gradient 
descent methods, the loss function of the neural network must be and differentiable. Therefore, we 
must find analytical expressions for the lateral spreading problem of section passes.  

To calculate the groove filling by lateral spread of given groove geometries, a suitable spreading 
model for flat passes must be applied in conjunction with an equivalent pass method as to enable 
the spread calculation of section passes. For the spread calculation, we will use Roux’s spreading 
model as given in [5, 6]. For the transformation between the section passes and equivalent flat 
passes, we use an extension of the equivalent pass method by A.E. Lendl [7], which will be shown 
in the following. 

Lendl’s method defines the mean entry and exit heights of the equivalent flat pass according to 
the relations 
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= =  . (1) 

The areas A0L and A1L are the parts of the entry and exit cross sections A0 and A1 which are 
subjected to the direct pressure exerted by the top and bottom roll. 

A0L and A1L can be constructed graphically or calculated from geometrical considerations of the 
pass geometries. Additionally, we must define a working roll diameter, which is given by 

1work nom Ld d h s= − +  (2) 

In Eq. 2, dnom is the nominal barrel diameter of the rolls and s is the roll gap of the groove. 
 
The pass sequence round-oval-round. Fig. 1 shows the pass round-to-oval with the geometrical 
parameters d0 (entry diameter), hov (height of the oval and, rov (radius of the oval).  
 

 
Fig. 1. The construction of the equivalence areas A0L (left) and A1L (right) for the pass round-to-

oval. 



Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 444-455  https://doi.org/10.21741/9781644903254-48 
 

 
446 

In the present approach, we restrict our considerations to the single-radius oval, noting that the 
approach can be extended to multi-radius ovals as long as their geometry can be described 
analytically. The intersection width wi is the distance between the intersection points of the entry 
section and roll contours (see Fig. 1). From geometrical considerations, it follows that 
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The areas A0L and A1L can then be calculated via 
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The mean heights of the equivalent flat pass are then calculated from Eq. 1. From the spread 
model, the exit width of the oval section w1 = wos is then calculated, from which the output oval 
contour is constructed. 

 
Fig. 2. Construction of the equivalence areas A0L (left) and A1L (right) for the pass oval-to-

round. 
For the second pass oval-to-round, the oval section will be rotated by 90° to an upright position 

and fed into a round groove. It should be noted that due to the upright rotation, the former width 
of the oval wos now becomes the initial height, whereas the former height of the oval hov becomes 
the initial width. For clarity, we retain the definitions shown in Figs. 1 and 2. 

In the round pass, the height of the section is reduced from wos to h1 = d1 (see Fig. 2). The final 
radius of the round section is r1. We shall note that the round groove is tangentially opened to 
prevent rolling faults due to spreading variations. The intersection width wi of this pass is now 
given as 
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is the y-coordinate of the intersection point. Therefore, the area A0L follows to (cf. Fig. 2):  
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and the area A1L is: 
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The equivalent heights h0L and h1L are again calculated by Eq. 1. Now, with the working roll 
diameter calculated according to Eq. 2, we can carry out the spread calculation for the second pass 
oval-to-round using Roux’s spreading model, yielding the final width w2 of the round section. 

As a result of the spread calculation, the final width of the round section is found. To assess the 
suitability of the present oval geometry, we express the filling condition of both grooves (oval and 
round) in terms of a filling ratio given as ffill = actual width / nominal width. The nominal width is 
defined differently depending on the groove type.  

For round grooves, we usually take the diameter of the intended round section as the nominal 
width. For minor grooves, the width on face of the minor groove is used as the nominal width.   
The width on face wof of a single-radius oval groove is calculated according to 
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   . (10) 

For non-final round sections, target filling ratios between 0.95 and 0.98 are used, while for 
single-radius ovals, the target filling ratios area usually in the range between 0.8 and 0.9.  
 
The pass sequence square-diamond-square. To work out the geometrical relations leading to the 
definition of the equivalence areas A0L and A1L on the general pass diamond-to-diamond, we shall 
first treat the definition of the section area on a rolled diamond section, as given in Fig. 3. 
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Fig. 3. Typical cross section rolled in a diamond groove. 

The diamond has the theoretical height h. Practically, the groove tips are rounded with a main 
radius R1, leading to a smaller height of the exit section hS. Under lateral spread, a final width wS 
of the section is generated with the sides of the rolled section being curved at a filling radius Rf. 
The total area of this cross section AS can now be calculated as follows: 
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Here, xS and yS are the coordinates of the intersection point between the arc of the filling radius 
and the inclined groove contour in the first quadrant (see Fig. 3). The angle φ corresponds to the 
chord of the filling radius and is given by ( )tan /S S My x xϕ = − , where xM  = wS/2 – Rf is the x-
coordinate of the center of the radius Rf. The angle γ is always γ = 90° - α/2. Note that for this 
construction, Rf cannot be less than 
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Similarly, we can determine the equivalence areas A0L and A1L as shown in Fig. 4.  
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Fig. 4. The construction of the areas A0L (left) and A1L (right) at the generalized pass diamond-

to-diamond. 
In Fig. 4, the general pass diamond-to-diamond is considered, which also applies to the passes 

square-to-diamond and diamond-to-square as special cases. Note that the groove opening angles 
α0 on the entry section, as well as α1 of the exit section are not equal to 90° in Fig. 4 for generality 
of the considerations. 

By comparing Fig. 4 (left) to Fig. 3 and subtracting the triangular regions left and right to the 
intersection distance, we can calculate the shaded area A0L in Fig. 4 (left) via 
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where R0 and α0 are the original tip radius and opening angle of the entry diamond, respectively. 
The area A1L in Fig. 4 (right) is given by 
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The height and width values of the region bounded by the intersection points (see Fig. 4) are 
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The passes square-to-diamond and diamond-to-square are special cases of the general case 
treated here, with 0 90α = °  for square-to-diamond and 1 90α = °  for diamond-to-square.  

For the target filling criterion, we again define the width on face wof of the diamond and square 
grooves at the roll gap s and the groove height h by 
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. (17) 
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In this pass sequence, we usually require a well-filled diamond groove with filling ratios of 0.95 
to 0.98.  
Structure of the neural network 
As the roll pass design problem can be split into several units, each of which comprises a minor 
groove and a major groove, we design the neural network to predict the minor groove dimensions 
which are optimal for the transition between a given entry section (round or square) into the first 
pass and a given exit section out of the second pass (round or square).  

We use three input features, which comprise the entry size s0 or d0, the exit size s1 or d1 and the 
nominal roll diameter dnom. The output features comprise the height h and width w of the minor 
groove to be used for the intended deformation. 

It was found that a deep neural network with 3 hidden layers provided the best prediction 
capabilities for the current task. The first hidden layer uses 90, the second one 40 and the third 
hidden layer 20 neurons.  

In all hidden layers, the Rectified Linear Unit (ReLU) is used as the activation function. In the 
output layer, we use the linear activation function as not to restrict the output data range. 
Training procedure 
Prior to the training, we define ranges of the input values which should be covered. Table 1 gives 
an overview of the training data ranges which were used for the pass design of round sections. 
 

Table 1. Overview of the training data for the round-oval-round pass design. 
 

 Minimum value Maximum value Number 
of values 

Initial diameter 
d0 

15 [mm] 30 [mm] 10 

Mean reduction 
per pass 

18 [%] 25 [%] 10 

Roll diameter 
dnom 

210 [mm] 500 [mm] 10 

 
Therefore, a total of 1000 combinations of rolling parameters are considered during the training 

procedure. The target filling ratios are always set to 0.85 for the ovals and 0.95 for the round 
grooves.  

The input data is normalized to a range of [0,1] for each input feature. Out of the 1000 samples, 
150 are selected for the calculation of the validation loss. 

A training batch size of 16 samples is used. For each batch, the neural network will propose 16 
corresponding minor grooves for the intended deformation task. Based on the equations presented 
above, the loss function calculates the groove fillings of both passes (minor and major) and 
compares these values to the target filling ratios. Then, the loss function is calculated as 

( ) ( )2 2* *
1 1 2 2, ,L w h w w w h w w   = − + −    , (18) 

where w1 and w2 are the section widths of both passes calculated for the predicted (guessed) minor 
groove characterized by its height h and width w, while w1* and w2* are the target widths of the 
two passes. 

 In the beginning of the training process, the neural network will present random guesses 
of groove geometries to the loss function, which might lead to a non-defined loss value. Therefore, 
we guide the neural network towards a technically feasible range by a normalization of the output 
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data to a range of [0,1]. However, the outputs are not constrained to this range since we use linear 
activation in the output layer. 

The training is carried out similarly for the square-diamond-square pass design. Table 2 
provides an overview of the data ranges and the sample sizes used in the training. 
 

Table 2. Overview of the training data for the square-diamond-square pass design. 
 

 Minimum value Maximum value Number of 
values 

Initial 
sidelength s0 

30 [mm] [60] mm 10 

Mean 
reduction per 
pass 

20 [%] 25 [%] 10 

Roll diameter 
dnom 

350 [mm] 650 [mm] 10 

 
As a result, two trained neural networks were developed, one for the pass sequence round-oval-

round and one for the pass sequence square-diamond-square. For each network training, the Adam 
optimization algorithm [4] is applied for 500 epochs at a learning rate of 0.0001. 
Results of the neural networks and comparison to analytical calculations 
The round-oval-round pass design. The neural network, trained as described above, can now be 
used to predict the necessary width and height values of a single-radius oval in a two-pass sequence 
round-oval-round. 

To examine the precision of the prediction and to prove to usability of the present approach, 
testing data was generated using the classical iterative method on the data range given in Table 3. 
 

Table 3. Testing data for the round-oval-round pass design neural network.  
 

 Minimum value Maximum value Number 
of values 

Initial diameter 
d0 

16 [mm] 29 [mm] 16 

Mean reduction 
per pass 

18 % 23 % 16 

Roll diameter 
dnom 

250 [mm] 420 [mm] 16 

 
For each of these combinations (16*16*16 = 4096 samples in total), the necessary oval groove 

was calculated classically using the equations (1) to (9). The calculation was repeated iteratively, 
until a filling error of less than 0.05 mm occurred in both passes. The neural network (trained 
previously using the data ranges given in Table 1) was then applied to the input data given in Table 
3. The results of oval heights and widths are shown in comparison in Fig. 5. 

 



Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 444-455  https://doi.org/10.21741/9781644903254-48 
 

 
452 

  
 

Fig. 5. Comparison of analytically calculated test data to the corresponding neural network 
predictions for the oval width and height. 

The left-hand part of Fig. 5 shows the comparison between predicted and analytically calculated 
oval widths, whereas the right part of the figure shows the corresponding results for the oval 
heights. As can be seen, the predicted oval geometries are in very good agreement to the direct 
iterative calculation. 
 
The square-diamond-square pass design.  The similar procedure was carried out for the pass 
sequence square-diamond-square on the testing data range given in Table 5. 
 

Table 4. Testing data for the square-diamond-square pass design neural network. 
 

 Minimum value Maximum value Number of 
values 

Initial sidelength 
s0 

30 [mm] 60 [mm] 16 

Mean reduction 
per pass 

20 [%] 25 [%] 16 

Roll diameter 
dnom 

350 [mm] 650 [mm] 16 

 
In Fig. 6, the prediction results of the neural network are shown in comparison to the direct 

analytical calculations of the pass design. Similarly as for the round-oval-round pass design, the 
prediction results are very close to the ones calculated analytically. 
 



Metal Forming 2024  Materials Research Forum LLC 
Materials Research Proceedings 44 (2024) 444-455  https://doi.org/10.21741/9781644903254-48 
 

 
453 

  
 

Fig. 6. Comparison of analytically calculated test data to the corresponding neural network 
predictions for the diamond width and height. 

Checking the predictions using a numerical pass-design software. A more practical evaluation 
of the prediction results can be carried out when the predicted grooves are checked with a 
simulation and optimization software for roll pass designs. Such software solution called MPC – 
Mill Process Calculations is maintained at the Chair of Metallurgy and Metal Forming [8]. The 
algorithm used by the software to calculate the groove fillings is based on the same principles as 
the one employed as a loss function in the current approach, but not in its analytical form. Instead, 
a numerical treatment of the section and groove contour geometries is applied which provides a 
higher flexibility at the geometrical section formation. 

As a study, we want to consider a pass sequence round-oval-round for an initial section with a 
diameter of 27 mm, to be rolled down to a final diameter of 16 mm in 4 passes at a nominal roll 
diameter of dnom = 300 mm. As we see from Table 1, this data is well inside the training range of 
the neural network. The intermediate round diameter needed in the second pass was d2 = 20.66 
mm for a homogeneous deformation distribution. The two oval grooves in passes 1 and 3 were 
predicted by the neural network, and the groove fillings were computed using the numerical model. 
The cross-sectional results for the first two passes are shown in Fig. 7. 
 

 
Fig. 7. Numerically calculated oval and round sections with the oval geometry proposed by the 

neural network for a round-oval-round sequence. 
Table 5 gives an overview of the calculated results for all four passes. For the oval grooves, we 

define the filling ratio as the width of the section of the width on face of the groove, where the 
neural network was trained to design the grooves for a value of 0.85. For the round grooves, the 
filling ratio is defined as the section width divided by the section height. Here we trained the neural 
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network to reach a value of 0.95. This slight underfilling of the round grooves is intended for a 
good contact condition in the following oval groove within a pass sequence. 
 

Table 5. Results of the numerical validation calculations for round-oval-round with the oval 
geometries proposed by the neural network. 

 
Pass Section 

shape 
Height of 
section 
[mm] 

Width of 
section [mm] 

Width on face of 
the oval grooves 
[mm] 

Actual filling 
ratio 

1 Oval 14.57 35.68 41.96 0.850 
2 Round 20.66 19.56  0.947 
3 Oval 10.89 27.90 33.24 0.839 
4 Round 16.00 15.12  0.945 

 
Summary 
In the present work, it is shown how a neural network can be informed about the metal forming 
equations governing the pass design process of round and square sections. The analytical model is 
used as a custom loss function to train a neural network for the task of roll pass design of two-pass 
sequences. Therefore, no pre-generated target data is used for the training, but the targets are 
generated by the neural network itself during the training process, based on a prescribed input data 
range. The data range of the network can easily be extended without the necessity of external data 
generation. Once trained, the neural network can predict the necessary groove geometries without 
the necessity of multiple iterations in close agreement to the iterative analytical calculations. 

In the current usage example, we showed that the data-driven model predicts the groove 
geometries close to the results of analytical and numerical models. The neural network has the 
advantage of its easy portability compared to analytical and numerical models. Therefore, this 
technique is suitable to create a general method of rapid roll pass design. 

Generally, artificial neural networks with custom loss functions are an interesting technique to 
solve systems of nonlinear equations, which can otherwise only be solved iteratively. The present 
roll pass design problem is only one example. However, one limitation of the approach is that the 
underlying physical model must be given in its analytical form, as to ensure differentiability with 
respect to the input parameters. 
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