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Abstract. Electroluminescence (EL) imaging of photovoltaic solar cells can detect and classify 
solar panel faults. This method allows technicians and manufacturers to identify defective panels 
that may affect performance and longevity. However, noise in EL images and solar cell silicon 
granularity make this process difficult. The paper presents an automated deep-learning framework 
to identify faulty and normal solar cells from images. Xception, a popular CNN network, is 
modified to reduce complexity and solve overfitting issues. Few separable convolution layers were 
removed from the original Xception network, and lateral dropout layers were added. The proposed 
deep CNN is tested on ELVP. To balance two classes, images are augmented with two rotations 
and dimensional shifting. Finally, the proposed model is compared to a pretrained CNN network 
and leading methods. The quantitative analysis showed that the model performed better than 
previous methods, with 94.382% accuracy, 92% precision, 95.12% recall rate, and 93.53% F1 
score. Module fault identification helps with maintenance planning. Solar energy's widespread 
adoption and growth as a renewable and sustainable power source may result. 
Introduction 
Solar power has grown in popularity as a renewable energy source. Over the past decade, massive 
solar power plants worldwide have enabled large-scale solar energy component production. The 
photovoltaic (PV) module is essential to solar power. How well solar energy systems work depends 
on solar module efficiency. Crystalline silicon (c-Si) photovoltaic (PV) modules are the most 
popular due to their low cost per watt and well-established manufacturing process. Tang et al. [1], 
say this technology accounts for 97% of monocrystalline and polycrystalline module sales. 

Solar panel fault classification is necessary for several reasons. First, a solar panel fault can 
reduce energy output. It streamlines maintenance planning and resource allocation. Technicians 
can optimize their efforts and address critical issues quickly by categorizing and prioritizing faults 
by severity and impact. Additionally, fault classification in electroluminescent solar panels has 
helped develop predictive maintenance strategies. By analyzing historical fault data and 
understanding patterns and trends, predictive models can predict and prevent faults. In solar panel 
manufacturing, fault classification is crucial to quality control. Before deployment, manufacturers 
can identify and classify panel defects using imaging. This ensures customers receive high-quality 
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panels, improving satisfaction and reducing the risk of premature failure or performance 
degradation. 

These solar panel faults can be identified using I-V curve measurements, thermal-infrared 
imaging (IR), and electroluminescence (EL) imaging. The I-V curve approach utilizes graphs to 
display PV module voltage and current output under specific radiation conditions. While the I-V 
curve can show module status, it cannot identify faulty cells or their locations. Using infrared 
imaging to monitor solar modules and cells is another popular method. An open circuit can cool a 
place, while a large current can heat it. IR imaging can detect dead cells, hot spots, and short 
circuits. However, thermal cameras' low resolution prevents them from detecting microcracks [2]. 
Such issues can be resolved via EL imaging. One nondestructive way to detect PV module defects 
is with an EL test. EL imaging can discover faulty cells and regions with ease and provide a 
thorough evaluation of all PV module cells. The overall status and longevity of the module can be 
determined at any stage[3]. 

Electroluminescence (EL) imaging is useful for fault detection and characterization in PV 
panels. As solar energy becomes more popular as a clean and sustainable power source, PV panel 
performance and longevity are crucial. Solar panel faults can be identified and classified 
noninvasively and efficiently using EL imaging, maximizing energy generation and maintenance. 
Images of solar cells' electroluminescent response to an electric field are captured using EL 
imaging. These images allow the detection of cracks, hotspots, and degradation patterns that may 
not be visible to the naked eye. 

Some common fault types observed in EL images include cracks, i.e., visible breaks in solar 
cell structures, localized areas of high temperature, referred to as hotspots, and degradation 
patterns. This leads to reduced efficiency, resulting in diminished power output. By classifying 
these faults, technicians can identify the severity of the issue and take appropriate actions to rectify 
or mitigate its impact. 

There are key challenges associated with fault classification. Manually inspecting and 
classifying faults in each panel is time-consuming and impractical as the number of solar panels 
in large-scale installations increases. Automating the classification process through the 
development of intelligent systems and algorithms is crucial for efficiently handling the volume 
of data generated by multiple panels. Thus, there is a need to create an automated classification 
system that can effectively categorize and differentiate between various fault types, which requires 
a deep understanding of the underlying physics and characteristics of each fault. Deep learning has 
emerged as a powerful data-driven approach for image classification applications because it can 
learn directly from a set of images. However, there are certain challenges associated with using 
deep learning for EL image classification. The limited spatial resolution, lack of color information, 
presence of noise and artifacts in images and limited spectral information are the major challenges 
associated with the use of deep learning for accurate classification. 

There are many studies on EL imaging-based faulty panel identification. Overall, these methods 
can be categorized into traditional and machine learning algorithms. Several of the traditional 
methods include a logical gate-based image processing algorithm to enhance the crack regions [4], 
independent component analysis [5] and an anisotropic filter-based SVM approach for crack 
detection [6]. In this section, we review machine learning approaches. Zhang et al. [7] proposed a 
lightweight CNN with a size of 1.85 M learnable parameters based on the ResNet architecture for 
EL image classification. Based on the probability values, the overall set of images is divided into 
two classes, where panels are considered defective if their probability values are greater than 0.5. 
Their model achieved a maximum classification accuracy of 91.74%. In [8], the EL images were 
enhanced by equalizing the histogram of the images. Then, global information using the GCAM 
algorithm was integrated into an EfficientNet architecture to detect types of cracks or defects in 
the images. Attention-based deep learning was used in [9] to identify faulty panels from surface 
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images of panels and achieved 98.66% accuracy. An RGB dataset of panels with dust, cement, 
cracks, etc., are classified as faulty types in this research. The dataset contains dusty panel images 
that cannot be considered defective panels. In [10], the authors prepared their dataset using an 
OPT-M311 camera. They used image augmentation with rotation, brightness adaptation and mirror 
shifting. This dataset was used to train the CNN network. Their network performed well, with 
98.40% accuracy. However, validation on open-source datasets was not presented in the paper. 
Rahman et al. [11] tested various pretrained CNN architectures, including VGG and its variant, 
ResNet50 variant and the Xception network, to identify defective panels from a set of images. In 
their experiment, they sorted images into three categories, i.e., uncracked, cracked and unsure, 
which are too distorted. Although unsure images have notation, due to large distortions, they 
differentiate them from a set of functional and defective images. The Inception V3 network 
achieved 96% accuracy on monocrystalline panels, and VGG16 achieved 91.2% accuracy on 
polycrystalline panels. The limitation of this work is that the overall accuracy of combining both 
methods was not presented in the paper. 

This paper presents a low-complexity, resource-efficient deep convolution network for EL 
image classification. We modified the Xception network to classify EL images into two classes, 
i.e., normal or defective. The major challenges in EL images are their low resolution and lack of 
spectral information. The use of a depthwise separable convolution layer in the Xception network 
allows efficient modeling of spatial relations within images that capture both global and local 
features. Therefore, we modified an Xception network by reducing its learning parameters and 
providing efficient classification with a small dataset. The remainder of this paper is organized as 
follows: Section 2 presents the proposed modified Xception network for EL image classification. 
Section 3 discusses the dataset and results using the proposed network. Finally, a conclusion is 
established based on the experimental results. 
Proposed Methodology 
The deep neural network plays a vital role in image categorization. A wide variety of pretrained 
networks are available for use in image classification. However, the types of images are the key 
aspect of selecting the CNN network. As explained in Section 1, electroluminescence imaging is 
a better choice for detecting faults within the cell of a PV module. However, the lack of spectral 
information and resolution makes this process challenging. A traditional CNN applies a set of 
filters K to the input feature map X with dimensions H × W × C, where H represents the height, 
W represents the width, and C represents the number of input channels. For the EL images, C is 1. 
Each filter has dimensions F x F x C, where F represents the filter size. The convolution operation 
is performed by sliding each filter across the input feature map, computing the elementwise 
multiplication between the filter and the corresponding spatial region of the input, and summing 
the results to produce an output feature map. 

The Xception network modifies this convolutional operation by separating the spatial and 
channelwise information. It introduces two separate convolutional operations: depthwise 
convolution and pointwise convolution. The depthwise convolution operates on each input channel 
independently. It applies a set of depthwise filters, denoted as Kd, to each input channel of the 
feature map X. The depthwise filters have dimensions F × F × 1, where 1 represents the number 
of input channels. The depthwise convolution produces a set of intermediate feature maps, denoted 
as M, with dimensions H x W. Mathematically, the depthwise convolution can be represented as: 

M = DepthwiseConv(X, Kd)                  (1) 
The pointwise convolution performs a 1x1 convolution on the intermediate feature maps M 
obtained from the depthwise convolution. It applies a set of pointwise filters, denoted as Kp, to 
combine and transform the intermediate feature maps. The pointwise filters have dimensions of 1 
x 1 x C', where C' represents the number of output channels. The pointwise convolution produces 
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the final output feature map, denoted as Y, with dimensions H x W x C'. Mathematically, it can be 
represented as: 
      Y = PointwiseConv(M, Kp)                    (2) 

By separating the spatial and channelwise convolutions, the Xception network reduces the 
number of parameters and computations compared to standard convolutions. This parameter 
efficiency makes the Xception network computationally efficient and suitable for deep learning 
tasks with limited computational resources. The Xception network architecture repeats the 
depthwise and pointwise convolutions in multiple layers, enabling the network to learn hierarchical 
representations of features at different scales and complexities. Additionally, the Xception network 
often incorporates other common components found in deep neural networks, such as pooling 
layers, activation functions, and fully connected layers, to further enhance its performance. The 
structure of the Xception network, shown in Figure 1, is established based on the experimental 
results. 

 
Figure 1 Xception network structure for convolution operation 

The Xception network is built using stacking depth-separable convolution and comprises 14 
modules, each with 36 convolutional layers. All of the layers utilize this technique except for the 
first 2 and the ones linked by residuals; the basic network is also built using this method. The 
pretrained Xception network has 170 deep layers with 22.9 million learnable parameters. The 
internal structure represented in Figure 2 is repeated 12 times with additional separable 
convolution layers in a few of the blocks. Here, this network is modified to classify grayscale EL 
images. In the proposed network, the initial layer is modified for grayscale images. The initial 80 
layers of the pretrained Xception network are the same as those of the proposed network. The size 
of the network is reduced by removing the last four blocks. In addition, dropout layers are added 
to block 7 and the last block of the structure to reduce the feature size. These dropout layers help 
to solve the problem of network overfitting. The overall proposed structure has 120 layers with 
14.3 M learnable parameters. 

 
Figure 2 One block of convolution operations in the Xception network 
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Result Analysis and Discussion 
Dataset 
There is a wide variety of PV cell faults; however, not all of them will cause a significant drop in 
power output. The power output of the module is unaffected by some flaws, but it can be reduced 
over time, or the cells can disengage from the module due to others [12]. EL imaging can reveal 
cracks, microcracks, fractures, disconnections, silicone material flaws, finger disruptions, and 
unconnected cells. In this study, overall, PV cells were classified into two categories, i.e., normal 
and defective, if the panel had any of the above abnormalities. The ELVP dataset prepared using 
18 monocrystalline and 26 polycrystalline PV panels from [13] was used in the experiments. A 
total of 2624 EL solar cell images, including 1508 normal images and 1116 defective images, are 
available in this dataset. Out of 1116 defective images, 715 images are faulty with 100% 
probability, and the remaining images have a lower probability of being faulty. Therefore, in the 
experiment, we used 1508 normal images and 716 defective images. We divided the EL images 
into a training set consisting of 80% (1206 normal and 573 defective) and a test set consisting of 
20% for dataset partitioning. The sample images of both the normal and defective panels are shown 
in Figure 3. 

    

Figure 3 Sample images from the dataset (the left two images are normal panels, and the right 
two images are defective panels) 

The small size of the dataset causes overfitting. Therefore, before using this dataset, an 
augmentation of images is used to enlarge the dataset. The dataset used had perfectly aligned EL 
images. Therefore, during the augmentation process, rotations of 90° and 180° were used. In 
addition, random shifting in both the X-direction and Y-direction is performed by increasing the 
set of training and testing images. This also helps to address the imbalance between the two classes. 
 
Results and Discussion 
The ADAM optimizer is used in a modified Xception network. The learning rate is initialized to 
0.0001. The maximum number of epochs used is 10, and 64 is selected for the mini-batch size. 
Images are shuffled at every epoch for better network performance. We decided to quantify the 
classification effect and performance of our suggested model using accuracy, recall, precision, and 
F1 score, which are four commonly used metrics for evaluating and comparing effective models. 
In particular, higher values indicate better results for F1, recall, accuracy, and precision. If true 
positives (TPs) and true negatives (TNs) represent the number of positive results, for example, 
corrected detection of normal and defective panels, whereas false positives (FPs) and false 
negatives (FNs) represent the number of negative results, then these matrices can be calculated as 
follows: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 ,                   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
                (3)  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                   𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

     (4) 
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Figure 4 Accuracy and loss variation over time for the training and test datasets 

The normal PV cell EL images had a uniform surface, but they had shadowed areas or impurities 
in the background. The backgrounds were clear and textured, but they were not defective; this put 
some pressure on the model to find defects. It was challenging to differentiate the surface defects 
of aberrant PV cells from the background in the EL image because they looked so similar to the 
background in the original image. The accuracy and loss analysis over the epochs for the training 
dataset are shown in Figure 4. Figure 4 shows that the model succeeded in achieving 93.93% 
accuracy with a training loss of less than 0.2. 

The confusion matrix represents the TP, TN, FP and FN results of the network. Figure 5 shows 
the confusion matrix of the proposed network for the training dataset. 

 
Figure 5 Confusion matrix of the modified Xception network 

In Figure 5, the first two diagonal cells show the number and percentage of correct 
classifications by the network. For example, 122-panel images are correctly classified as defective. 
This corresponds to 27.4% of all test set images. Similarly, 298 cases are correctly classified as 
normal. This corresponds to 67% of all test images. Twenty-one of the defective panels are 
incorrectly classified as normal, which corresponds to 4.7% of all images. Out of 302 normal test 
images, 98.7% are correct and 1.3% are incorrect. Overall, 94.4% of the predictions are correct, 
and 5.6% are wrong. 

Some of the most successful approaches to PV defect detection in the past few years were 
compared to our model. We selected these approaches for testing and assessment on the same 
dataset as our proposed model to ensure a fair comparison; Table 1 displays the results of the 
method comparison. 
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Table 1 Comparison of the experimental results with those of other methods 
Model Accuracy Precision Recall F1 Score 
CNN [14] 78.38 77.86 70.10 71.84 
VGG16 [14] 84.01 82.26 80.31 81.15 
InceptionV3 [14] 88.96 87.73 86.72 87.20 
SVM [15] 82.44 - - 85.52 
CNN [15] 88.42 - - 88.39 
L-CNN [16] 89.33 90.44 95.42 92.86 
Our network 94.382 92 95.12 93.53 

 
As shown in Table 1, pretrained networks, including CNN, VGG16 and InceptionV3, were 

tested in [14], and their models were compared. The presence of noise makes it challenging, and 
therefore, these models struggle to classify faulty panels from the set of images. In [15], the authors 
extracted various VGG-based CNN features, and SVM was used as a classifier. A validation of 
the experiment using mono-, poly- and the overall set of images was presented in the paper. 
However, their accuracy was limited to 88.42 max when using a CNN. In [16], a lightweight 
convolutional neural network was presented. They trained it from scratch, and a comparison with 
a support vector machine was presented in their work. Their light CNN succeeded at 89.33% 
accuracy for two-class classification. In contrast, the modification of the Xception network with 
the removal of a few separable convolution layers and the introduction of dropout layers performed 
well on augmented images and achieved 90% accuracy. 
Conclusion 
Solar cells have crystal grain boundaries due to the intrinsic silicon structure, and the presence of 
noise in EL images causes ambiguity in distinguishing minor cracks. In addition, EL images lack 
spectral information. These characterizations impose a challenge to applying conventional CNN 
networks to identify faulty cells from normal cells. In this paper, we used the Xception network to 
determine whether a panel is defective. The large number of layers in deep CNNs increases the 
complexity of the network; hence, the network cannot learn well from grayscale images. 
Therefore, the network is minimized by removing repetitive separable convolution layers. 
Furthermore, dropout layers are introduced in the Xception network to solve the overfitting 
problem, and the experimental results and a comparison with state-of-the-art methods suggest that 
the model’s classification accuracy is improved. The experimental results are validated for binary 
classification only. Therefore, further validation of the network for multiclass classification will 
be performed in the future.  
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