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Abstract. Solar energy, an inexhaustible and pristine power source, harbors the capability to 
mitigate the emissions of greenhouse gases and the dependency on fossil fuels, thereby playing a 
pivotal role in the conservation of our ecosystem. Nevertheless, the process of harnessing solar 
energy from sunlight is subject to the capricious characteristics of weather conditions, which 
include variables such as the density of cloud cover, levels of atmospheric moisture, and 
fluctuations in temperature. Hence, the task of prognosticating solar radiation holds significant 
importance for the strategic planning and efficient management of solar power systems. The 
current machine-learning methods for predicting global solar radiation make use of recurrent 
networks. One major downside of recurrent-based models is that they are exposed to vanishing 
gradients and stagnant performance over longer available input sequences. The model showcased 
is an attention-fueled Temporal Convolutional Network (TCN) intertwined with Convolutional 
Neural Network (CNN). The suggested method merges the advantages of the feature extraction 
proficiencies of a TCN and the aggregation capabilities of a CNN. The method has been tested for 
up to 24 hours of future time sequence prediction and it has been noted that its performance is 
unmatched. 
Introduction 
Owing to the unpredictable characteristics of weather conditions, the production of solar energy 
harnessed from sunlight cannot be pre-established with absolute certainty. Many methods for 
predicting solar radiation have been employed because it is critical in many industries, including 
solar energy production, agriculture, and weather forecasting[1]. Accurate predictions of solar 
radiation help these industries to plan and make informed decisions. Historically, the prediction of 
solar radiation was reliant on physical models that considered a multitude of factors. These 
included the position of the sun, the angle of incidence, the extent of cloud cover, and the prevailing 
atmospheric conditions [1]. These models require significant expertise and resources to develop, 
and the quality and availability of input data can limit their accuracy. Furthermore, they may be 
unable to capture the complex relationships between input variables and output predictions [1]. In 
recent years, there has been a growing interest in using machine learning (ML) algorithms to 
improve solar radiation prediction [2]. ML algorithms can model complex relationships between 
input and output by learning from the provided data. An ML technique that has an effective handle 
on getting better performance with big data is deep learning because of its ability to incorporate 
large datasets and interpret complicated correlations between variables in a versatile, trainable way 
[3]. Deep learning techniques like multi-layered perceptron [4], convolutional neural networks [5], 
and recurrent neural network [6, 7] have been used to explore predicting global solar radiation. 
While these methods have no doubt produced encouraging results, they do so with some 
challenges. Firstly, some of the methods used in predicting solar radiation fail to provide an 
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estimation over multiple time steps. Multiple-time step prediction provides the advantage of being 
used in early warning applications and predictive planning. Secondly, although other models based 
on recurrent networks like Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 
and gated recurrent units (GRUs) have the capability of storing significant information and 
prediction over multiple time steps, they do suffer from degradation when making predictions over 
multiple time steps. 

In response to these challenges, a multi-time step prediction architecture is proposed using a 
two-stage approach. The first stage extracts feature from the input dataset by using an attention 
mechanism with a temporal convolutional network (TCN) backbone. The first stage acts as an 
encoder as it outputs a fixed-length representation of the input. The second stage acts as a decoder 
using the fixed length representation to predict the desired output. It does so by leveraging a CNN 
and a dense layer to forecast solar radiation for multiple time steps. 
Related Work 
The application of ML techniques has brought about significant advancements in the study of solar 
radiation [8]. ML, a smaller category under artificial intelligence, revolves around the principle of 
instructing algorithms to identify patterns and formulate predictions predicated on data. These 
algorithms, with their ability to learn and adapt, offer a more efficient and precise approach to data 
analysis compared to traditional methods. [9] proposed a novel data preprocessing approach that 
aims to reduce forecasting errors, which are often associated with traditional prediction methods 
such as Markov chains or k-Nearest Neighbors (KNN). They engineered an enhanced multi-layer 
perceptron (MLP) model, incorporating three neurons within the concealed layer. This model 
demonstrated the capacity to yield predictions that were on par, if not surpassing, those generated 
by techniques such as Bayesian inference, Markov chains, and the KNN algorithm. Xing et al. 
introduced an innovative hybrid stack autoencoder LSTM (SAELSTM) architecture, specifically 
de-signed for predicting daily global solar radiation (GSR) [10]. This architecture harnesses the 
power of deep learning and incorporates a feature selection technique grounded on Manta Ray 
Foraging Optimization (MRFO). The utilization of this architecture in the context of GSR 
forecasting is further elaborated in the work of Ghimire et al. [11]. The deep learning hybrid 
SAELSTM model outperformed other models and persistence methods in simulations in terms of 
accuracy. The model generates intervals for high-quality solar energy predictions with a high 
likelihood of coverage and minimal interval errors. The study found that deep learning models, 
such as Bidirectional LSTM [12], perform better than traditional ML for forecasting daily GSR 
models. In a study conducted by Alizamir et al., wavelet transformation was utilized to break down 
different meteorological parameters to predict daily solar radiation [7]. The decomposed signals 
were then used as input into an LSTM recurrent network. While this approach improved network 
performance, it also increased the number of input parameters needed, thereby increasing the 
complexity of the optimization process. In another study, [13] employed CNN and an 
amalgamation of CNN and LSTM to predict monthly radiation at multiple steps. The study inferred 
that CNN outperformed other models such as MLP, LSTM, GRU, and CNN-LSTM. However, it’s 
important to note that the receptive fields of CNN do not consider the sequence progression of 
time series data, which could limit its effectiveness in certain applications. Ghimire et al. predicted 
solar radiation by selecting features using a random forest recursive feature elimination [5]. The 
convolutional neural network extracted features which were then fed as input to a multilayer 
perceptron to generate a predicted output. However, using a multilayer perceptron for prediction 
limited the model’s capability of predicting global solar radiation over multiple time steps. This 
highlights the need for models that can effectively handle time series data and make accurate 
predictions over multiple time steps. 
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Methodology 
Symbol Definitions and Issue Formulation:  

Consider an exogenous series, denoted as 𝑋𝑋 = (𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛) and 𝑋𝑋 ∈  ℝ𝑇𝑇×𝑛𝑛 where n 
represents the number of features and T signifies the time steps. The 𝑖𝑖 − 𝑡𝑡ℎ exogenous series, 
expressed in terms of time steps, can be represented as 𝑋𝑋𝑖𝑖 = (𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, … , 𝑋𝑋𝑖𝑖𝑇𝑇)  or 𝑋𝑋𝑖𝑖  ∈  ℝ𝑇𝑇 . The 
objective of a time series prediction network is to train a function that, given a specific set of 
previous time series features 𝑋𝑋 = (𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛) and their corresponding outputs within that 
time steps 𝑌𝑌� =  𝑦𝑦�𝑇𝑇+1,𝑦𝑦�𝑇𝑇+2, … ,𝑦𝑦�𝑇𝑇+𝑘𝑘  where 𝑌𝑌 ∈  ℝ𝑘𝑘. This can be mathematically expressed as: 
𝑦𝑦�𝑇𝑇+1,𝑦𝑦�𝑇𝑇+2, … ,𝑦𝑦�𝑇𝑇+𝑘𝑘 = 𝐹𝐹(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑇𝑇 ,𝑌𝑌)                                                                                           (1) 
In this equation, the function 𝐹𝐹(. ) is the function whose parameters are learnable. This means that 
the function can adapt and improve its performance based on the data it is trained on, thereby 
enhancing the accuracy of the predictions it makes. 

Model:  
The design of the proposed model as outlined in Figure 1 takes a series of driving input 

sequences as its input. These sequences are then passed through an LSTM block, which acts like 
a translator, converting the input sequences into a form that the model can understand better; this 

is known as embedding. The decision to use recurrent layers for extracting embeddings was 
inspired by the work of Gugulothu et al., where GRUs were utilized to generate embeddings for 
decoding multiple sequences in a multivariate time series network [14]. 

The output gate of an LSTM is expressed as: 
𝑜𝑜𝑛𝑛 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(. ) =  𝜎𝜎(𝑊𝑊𝑜𝑜 ∗  𝑋𝑋𝑛𝑛 +  𝑈𝑈𝑜𝑜 ∗  ℎ𝑛𝑛−1 + 𝑏𝑏𝑜𝑜)                                                                                (2) 
𝑋𝑋𝑛𝑛: the input vector at time 𝑛𝑛 
ℎ𝑛𝑛: the hidden state vector at time 𝑛𝑛 
𝑊𝑊 : input-to-hidden weight matrix 
𝑏𝑏: hidden layer bias vector 
𝜎𝜎: sigmoid activation functions. 
From equation 2, the output 𝑜𝑜𝑛𝑛 gives the temporal input embedding. The temporal input can be 

rewritten as: 
𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, … , 𝑋𝑋𝑖𝑖𝑇𝑇)                                                                                                  (3) 

The embedded input is then fed into a feature extraction network. This network is made up of 
an attention block stacked on top of a temporal convolution network.  

Attention Block:  
The Attention Block [15], works by first obtaining an attention weight vector from the provided 

input. This input could be represented as 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒�𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
1 , 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

2 , … , 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
𝑇𝑇 �. The attention 

block helps the model focus on the most important parts of the input. It’s postulated that the 
embeddings possess the same dimensional attributes as the input, albeit this is typically not the 
scenario. The attention weight vectors are calculated using the following equations: 
𝑢𝑢𝑖𝑖 =  𝑊𝑊𝑢𝑢

𝑇𝑇𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 + 𝑏𝑏𝑢𝑢                                                                                                                                   (4) 

Figure 1 Graphical illustration of the proposed model architecture. It consists of an input layer 
(the blue line leading to the attention block signifies an LSTM layer used for embedding input), a 

stacked attention based TCN, a CNN block for merging the TCN output, and finally a linear 
output layer. 
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Where 𝑊𝑊𝑢𝑢 ∈  ℝ𝑇𝑇×1, and 𝑏𝑏𝑢𝑢 ∈  ℝ are parameters to be learned. These attention weight vectors 
are then normalized using a SoftMax function to ensure they all sum to unity. The normalization 
SoftMax functions can be expressed as: 

𝜇𝜇𝑖𝑖𝑡𝑡 =
exp(𝑢𝑢𝑖𝑖𝑡𝑡)

∑ exp(𝑢𝑢𝑖𝑖𝑡𝑡)𝑇𝑇
𝑡𝑡=1

                                                                                                                                       (5) 

where 𝑡𝑡 ∈ [1,𝑇𝑇]. These normalized softmax values represent the distribution of the input that 
should be paid attention to. The attention output, defined by the function 𝐹𝐹𝑎𝑎𝑡𝑡𝑡𝑡    (∙), can be 
calculated by multiplying the normalized SoftMax by the input: 
𝑥𝑥𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑡𝑡 ∙ 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖                                                                                                                                        (6) 

Extracting Features with TCN:  
In sequence modelling, recurrent networks such as RNN and its variants have been traditionally 

used until Bai et al. introduced the concept of using generic convolutional networks for sequence 
modelling tasks. This new approach, called Temporal 
Convolutional Networks (TCN), outperformed the 
LSTM [16]. The structure of the TCN is a simple 
modification of the conventional CNN. The TCN uses 
causal convolutions, which ensure that the model’s 
prediction at a given time does not depend on future 
values of the input and makes them much faster to train 
compared to recurrent models as they do not have 
recurrent connections. A further enhancement of the 
causal convolution, known as dilated causal convolution, allows convolution over a wider window 
by skipping some input values. The receptive field of the dilated causal convolution is much wider 
than that of the causal convolution, making it more efficient. Figure 2 shows the dilated causal 
convolutions for different levels of dilation. Given the input 𝑥𝑥 ∈ ℝ𝑇𝑇 and a filter f : {0, . . . , α, . . . 
, m − 1} of size m, the dilation convolution operator on α within the sequence can be defined as: 

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇(𝛼𝛼) = � 𝑓𝑓(𝑗𝑗) ∙ 𝑥𝑥(𝛼𝛼−𝑑𝑑∙𝑗𝑗)
𝑒𝑒−1

𝑗𝑗=0

                                                                                                                  (7) 

Where 𝑑𝑑 is the dilation factor, and 𝛼𝛼 − 𝑑𝑑 ∙ 𝑗𝑗 explains the orientation of the past. 
The Temporal Convolutional Network (TCN) block, as depicted in figure 1, is a composite of 
several components. These encompass a dilated causal convolution, weight standardization, a 
Rectified Linear Unit (ReLU) activation function, and dropout strata incorporated to augment the 
resilience of the network. The extent of the TCNs could potentially cause the vanishing gradient 
problem. This is a difficulty encountered during the training of artificial neural networks with 
gradient-based learning methods and backpropagation. To mitigate this, a skip or residual 
connection has been incorporated. In a residual block, as described by He et al. [17], there’s a 
pathway that leads us through a series of transformations, denoted as 𝐹𝐹𝑜𝑜. The results of these 
transformations are then seamlessly integrated with the block’s original input, x. The output after 
a residual connection, 𝑂𝑂𝑟𝑟𝑒𝑒𝑟𝑟, is given by the equation: 
𝑂𝑂𝑟𝑟𝑒𝑒𝑟𝑟 = 𝜎𝜎�𝑥𝑥 + 𝐹𝐹𝑜𝑜(𝑥𝑥)�                                                                                                                                   (8) 
Here, 𝜎𝜎 represents the activation function. This function introduces non-linearity into the output 
of a neuron. This non-linearity helps the network learn from the error so that the model can classify 
inputs that are not linearly separable. 

Aggregating extracted features with CNN:  
The output from the stack of attention TCN block is of the form ℝ𝑇𝑇×𝑇𝑇×𝐿𝐿 where 𝑁𝑁 is the batch 

size, 𝑇𝑇 is the number of the input sequence, and L is the number of channels in each TCN layer. 
There exists a requirement to transform the output of this Temporal Convolutional Network (TCN) 

Figure 2 TCN Architecture 
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into a vector of dimension ℝ𝑇𝑇×1×𝐾𝐾, where 𝐾𝐾 signifies the number of anticipated output sequences. 
To achieve an output of this dimension two different approaches can be followed: flattening the 
last two dimensions and using a linear layer, or a convolutional layer. In this study, the path of 
using a convolutional layer was followed because of the added advantage of reducing the number 
of parameters needed for computation. If a linear layer was used, the number of parameters 
required would be of dimension 𝑇𝑇 × 𝐿𝐿 × 𝐾𝐾 while when a 1-dimensional convolutional layer is 
used the number of weights required would be (𝐿𝐿 × 𝑚𝑚) + (𝐿𝐿 × 𝐾𝐾) = 𝐿𝐿 × (𝑚𝑚 + 𝐾𝐾), where m is 
the size of kernel used in the convolutional layer. The 𝐿𝐿 × 𝐾𝐾 accounts for the number of weights 
needed in the linear layer for the output to be in the right dimension after the convolutional layer. 
The convolution operation over an input 𝑋𝑋 can be expressed mathematically as: 
𝑂𝑂𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 =  𝜎𝜎𝑙𝑙𝑟𝑟(𝑊𝑊𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑋𝑋 + 𝐵𝐵𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐)                                                                                                                  (9) 
where 𝜎𝜎𝑙𝑙𝑟𝑟 is the leaky rectified linear unit (leakyReLU) activation function, 𝑊𝑊𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 is the 
convolutional weight, and 𝐵𝐵𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 is the convolutional bias. The dense layer utilized after the CNN 
is an affine amalgamation of the output after the convolution layer and a certain bias, devoid of an 
activation layer. 
Experimental data description, training settings, and evaluation metrics 
The empirical dataset employed in this investigation, amassed in the northern region of Saudi 
Arabia, comprises 75133 data entries encapsulating variables such as solar radiation, atmospheric 
temperature, relative humidity, velocity and direction of wind, and precipitation, extending over a 
period from 2012 to 2021. However, it’s important to note that there are gaps in the dataset between 

October 3rd, 2019, and January 1st, 2020, as well as between March 29th, 2020, and June 4th, 
2020. Given the sequential nature of the dataset, the data was not shuffled when loaded and was 
divided into training, validation, and testing portions. The split was done in a 70:15:15 ratio, 
ensuring a substantial amount of data for each phase of the model development and evaluation 
process. 
In this study, we considered the lags of Global Solar Radiation (GSR) as input to the model, to 
envisage the next one hour, six hours, 12 hours, and 24 hours respectively. The lags used are 24, 
48, and 72 hours respectively, or in mathematical notation as T ∈ {24, 48, 72}. To understand the 
effect of the time of day on global solar radiation, a box plot showing the distribution of GSR at 
every hour of the day is presented in Figure 3. The time of day significantly affects global solar 
radiation, with some outliers observed. A comparison of the maximum values of the variables in 
our dataset reveals the need for input scaling. Various scaling methods like the standard scaler, 
robust scaler, and min-max scaler have been used in different studies [18]. The best scaling method 
for a dataset depends on the variable distribution in that dataset, which can be visualized using box 
plots. The robust scaler, which uses the interquartile range and median, is used for this problem. 
The robust scaler calculates the scaled value of an item V in a series of inputs as: 

𝑉𝑉𝑟𝑟𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒𝑑𝑑 =
𝑉𝑉𝑜𝑜𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙 − 𝜂𝜂�

𝐼𝐼𝐼𝐼𝐼𝐼
                                                                                                                             (10) 

Figure 3 Box plots of GSR at every hour of the day. 
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where the scaled value is 𝑉𝑉𝑟𝑟𝑐𝑐𝑎𝑎𝑙𝑙𝑒𝑒𝑑𝑑, the original value is 𝑉𝑉𝑜𝑜𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙, 𝜂𝜂� represents the input median, and 
IQR is the input’s interquartile range. 
The forecast was made for the upcoming 1, 6, 12, and 24 hours, focusing on the variable k in 
equation 1, where k can be any of the values 1, 6, 12, or 24. This was done to test the theory of 

Temporal Convolutional Network (TCN) structure. The model’s hidden size was determined to be 
64 through a grid search, and this size was also used for the RNN and LSTM models. The model 
structure consists of 1 CNN layer and 6 TCN blocks each having a dropout rate of 0.2. An Adam 
optimizer with weight decay of 1 × 10−6 was used with a learning rate scheduler having a patience 
of 2, and a threshold of 0.01. All models underwent training under homogeneous conditions, 
commencing with a learning rate of 1 × 10−3 and persisting for 40 epochs within a Google Colab 
environment, utilizing the Torch library of 
Python-3. A v100 GPU with a 15GB RAM 
infrastructure was used for the entire 
experiment. To evaluate the models, three 
widely used metrics for time series prediction 
were employed: R-squared, Mean Absolute 
Error (MAE), and Root Mean Squared Error 
(RMSE). Lower values of RMSE and MAE 
and a higher R-squared indicate a better 
model. 
Results 
The outcomes of applying the proposed 
model to predict global solar radiation over 
several time steps are detailed in Table 1 and 
Figure 5. It’s plausible that employing 
exclusively recurrent architectures, such as 
LSTM and RNN, might culminate in optimal outcomes for a solitary temporal increment. 
However, it’s also arguable that the model introduced here can confidently compete at that single 
time step. When predictions are made over multiple time steps like that shown in Figures 4, and 
regardless of the amount of historical time sequence data used as input, the performance of the 
recurrent models (i.e., LSTM and RNN) declines significantly. The extent to which they are less 
accurate compared to the proposed model is quite substantial. There were some unexpected 
performances when the RNN was predicting 12 future time steps, and the LSTM was predicting 
6-time steps. Even under these conditions, the proposed model achieved performance measures 
close to the best possible outcomes. The consistent performance of this model, either close to the 
best or the best, attests to its balance and robustness. 
  

Figure 4 Prediction results for 24 future time steps. 

Figure 5 MAE Comparison 
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Table 1. Juxtaposition of Different Methods with 1 and 6 Prediction Steps. 
 Pred. 

Steps 
 1  6  12   24  

Mthds Inp. 
Seq. 

24 48 72 24 48 72 24 48 72 24 48 72 

 Metric             

LSTM RMSE 35.765 39.639 38.988 55.651 158.812 159.395 84.145 89.088 259.090 323.678 323.688 323.576 
 MAE 11.719 11.400 11.699 21.768 110.315 110.644 40.773 36.344 206.024 284.396 286.481 284.912 

 R-Sq. 0.988 0.985 0.986 0.971 0.735 0.733 0.932 0.926 0.345 0.032 0.031 0.032 

RNN RMSE 30.437 32.067 33.161 159.285 159.385 159.293 67.259 258.887 258.753 323.627 323.554 323.531 
 MAE 12.195 12.0160 12.911 110.162 110.404 110.693 27.966 204.729 205.334 284.612 284.856 284.684 

 R-Sq. 0.991 0.990 0.990 0.733 0.733 0.733 0.957 0.345 0.347 0.032 0.032 0.0319 

Ours RMSE 71.96 95.539 107.244 72.619 72.770 87.462 75.711 87.858 81.709 79.112 81.334 91.994 
 MAE 33.81 44.961 51.358 27.406 32.155 51.358 30.793 47.847 48.853 35.018 40.539 39.420 

 R-Sq. 0.952 0.915 0.893 0.951 0.951 0.928 0.946 0.928 0.938 0.941 0.938 0.921 

Conclusion 
This work suggested the application of an attention-fueled temporal convolutional network in 
conjunction with a convolutional neural network to predict global solar radiation (GSR). This 
approach is particularly effective when the accessible historical sequence of GSR spans durations 
of 24, 48, and 72 hours. We then compared the proposed model with other ML models used for 
GSR, including RNN and LSTM. The models were evaluated using RMSE, MAE, and R2 metrics. 
The empirical findings demonstrated that the suggested model exhibited superior performance 
compared to other models in most of the instances. Potential avenues for subsequent research could 
encompass broadening the temporal scope of the models to forecast one week or one month into 
the future and juxtaposing their performance with other established methodologies. Another 
direction is to investigate further feature generation and manipulation and to include other 
meteorological variables as input features for the models. 
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