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Abstract. Gradient-based optimization techniques require accurate and efficient sensitivity or 
design derivative analysis. In general, numerical sensitivity methods such as finite differences are 
easy to implement but imprecise and computationally inefficient. In contrast, analytical sensitivity 
methods are highly accurate and efficient. Although these methods have been widely evaluated for 
static problems or dynamic analysis in the time domain, no analytical sensitivity methods have 
been developed for eigenvalue problems. In this paper, two different analytical methods for shape 
eigensensitivity analysis have been evaluated: the Continuum Sensitivity Analysis (CSA) and an 
enhanced version of Nelson’s method. They are both analytical techniques but differ in how the 
analytical differentiation is performed: before and after the discretization, respectively. CSA has 
been applied to eigenvalue problems for the first time, while Nelson’s method has been improved 
and adapted to shape optimizations. Both methods have been applied to different cases involving 
shape optimization of beams. Both vibration and buckling problems were analysed considering the 
eigenvalue as a design variable. Both methods have been successfully applied, and Nelson's 
method proved to be more convenient for this kind of problem. 
Introduction 
Accurate sensitivity analysis is essential to guarantee the convergence of gradient-based 
optimization techniques. The sensitivity methods can be divided into numerical methods (finite 
difference, complex step), analytical methods (discrete analytical, continuum), hybrid methods 
(semi-analytical), or automatic differentiation methods. Analytical methods are preferred over 
numerical ones because of their higher accuracy and computational efficiency. They do not require 
convergence studies to find an adequate step size for calculating the numerical derivative, as for 
the finite difference method and the semi-analytical one [1,2,3]. Furthermore, they do not need the 
source code of the analysis or to handle complex operations, as needed for automatic 
differentiation [4,5] or complex step one [6], respectively. Analytical methods offer an accurate 
and efficient alternative to compute derivatives for structures [7,8,9], fluids [10,11,12], and fluid-
structure-interaction problems [13,14] with respect to shape design parameters. Continuum 
Sensitivity Analysis (CSA) has been developed to compute gradients to be used in shape 
optimizations for static structural problems or dynamic problems in the time domain. In this work, 
it has been extended for the first time to eigenvalue problems. On the other hand, Nelson’s method 
has been widely applied for calculating derivatives with respect to design parameters. In this paper, 
it has been extended for the first time to shape optimizations. Both methodologies are successfully 
developed and validated in this paper. However, CSA exhibited some limitations in terms of range 
of applicability and accuracy. Instead, Nelson’s method exhibits very good accuracy and 
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computational efficiency even with coarse meshes. In particular, a nonintrusive and element-
agnostic approach was pursued for the method to be suitable for standard commercial software in 
a black box configuration. Because of that, the approach can be adopted for practical applications 
concerning structural shape optimization. 
Differentiation of the analytical eigenvalue problem 
Considering the structural free vibration or buckling problem, the formal operator equation of the 
eigenvalue problem can be described by the following general equation: 

𝐴𝐴𝒚𝒚 = 𝜁𝜁𝜁𝜁𝒚𝒚,𝒚𝒚 ≠ 0, (2) 

where 𝒚𝒚 is used to indicate the eigenfunction, and 𝜁𝜁 is the associated eigenvalue. The following 
normalization condition has been employed to scale the eigenfunctions: 

(𝐵𝐵𝒚𝒚,𝒚𝒚) = 1,   (3) 

where ( , ) indicates the L2-scalar product. The principle of virtual work can be applied to get the 
variational formulation of the eigenvalue problem. The L2-scalar product on both sides of Eq. (3) 
with a smooth function 𝒚𝒚� satisfying the same boundary conditions as 𝒚𝒚 may be used to obtain the 
variational equation of the eigenvalue problem as: 

𝑎𝑎(𝒚𝒚,𝒚𝒚�) ≡ (𝐴𝐴𝒚𝒚,𝒚𝒚�) = 𝜁𝜁(𝐵𝐵𝒚𝒚,𝒚𝒚�) ≡ 𝜁𝜁𝜁𝜁(𝒚𝒚,𝒚𝒚�).  (4) 

A vibrating structure eigenvalue 𝜁𝜁𝜏𝜏 on a deformed domain Ω𝜏𝜏 is determined by a variational 
equation of the form: 

𝑎𝑎Ω𝜏𝜏(𝒚𝒚𝜏𝜏,𝒚𝒚�𝝉𝝉) ≡ ∬  Ω𝜏𝜏
𝑐𝑐(𝒚𝒚𝜏𝜏,𝒚𝒚�𝝉𝝉)𝑑𝑑Ω𝜏𝜏

= 𝜁𝜁𝜏𝜏 ∬  Ω𝜏𝜏
𝑒𝑒(𝒚𝒚𝜏𝜏,𝒚𝒚�𝝉𝝉)𝑑𝑑Ω𝜏𝜏 ≡ 𝜁𝜁𝜏𝜏𝑑𝑑Ω𝜏𝜏(𝒚𝒚𝜏𝜏,𝒚𝒚�𝝉𝝉),∀𝒚𝒚�𝝉𝝉 ∈ 𝑍𝑍𝜏𝜏,

  (5) 

where 𝑍𝑍𝜏𝜏 is the space of kinematically admissible displacements, and 𝑐𝑐( , ) and 𝑒𝑒( , ) are symmetric 
bilinear mappings. Since Eq. 5 is homogeneous in eigenfunction 𝒚𝒚𝜏𝜏, a normalizing condition must 
be used to define a unique solution. The following is the one used in this discussion: 

𝑑𝑑Ω𝜏𝜏(𝒚𝒚𝜏𝜏,𝒚𝒚�𝝉𝝉) = 1.  (6) 

The rigorous derivation of such an eigenvalue problem with respect to the shape, due to Choi and 
Kim [9], brings to the following general formula: 

𝜁𝜁′ = 2∬  Ω [−𝑐𝑐(𝒚𝒚,∇𝑦𝑦𝑽𝑽) + 𝜁𝜁𝜁𝜁(𝒚𝒚,∇𝒚𝒚)]𝑑𝑑Ω + ∫  Γ [𝑐𝑐(𝒚𝒚,𝒚𝒚) − 𝜁𝜁𝜁𝜁(𝒚𝒚,𝒚𝒚)]𝑉𝑉𝑛𝑛𝑑𝑑Γ
= 2∬  Ω [−𝑐𝑐(𝒚𝒚,∇𝑦𝑦𝑽𝑽) + 𝜁𝜁𝜁𝜁(𝒚𝒚,∇𝒚𝒚𝒚𝒚)]𝑑𝑑Ω + ∬  Ω div([𝑐𝑐(𝒚𝒚,𝒚𝒚) − 𝜁𝜁𝜁𝜁(𝒚𝒚,𝒚𝒚)]𝑽𝑽)𝑑𝑑Ω.

  (7) 

This formula can be particularized and simplified based on the type of modes and design velocities. 
Differentiation of the numerical eigenvalue problem 
Nelson's method is a discrete analytical sensitivity method and requires the governing equations 
first, to be discretized and second, to be differentiated. This kind of method involves the derivatives 
of the Finite Element (FE) matrices. Given the symmetric real matrices [𝐾𝐾], [𝑀𝑀], [𝐾𝐾′] and [𝑀𝑀′] 
∈ ℝ𝑛𝑛×𝑛𝑛, where [𝐾𝐾′] ≡ ∂[𝐾𝐾]

∂𝑝𝑝
 and [𝑀𝑀′] ≡ ∂[𝑀𝑀]

∂𝑝𝑝
 with 𝑝𝑝 shape parameter, let 𝜆𝜆 ∈ ℝ and {𝑥𝑥} ∈ ℝ𝑛𝑛  solve 

the following generalized eigenvalue problem: 

[𝐾𝐾]{𝑥𝑥} = 𝜆𝜆[𝑀𝑀]{𝑥𝑥}. (8) 
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The numerical eigenvalue is here called 𝜆𝜆 to distinguish it from the analytical one (𝜁𝜁). Also, the 
numerical eigenvector is indicated with {𝑥𝑥} to discern it from the analytical eigenfunction 𝒚𝒚. The 
numerical eigenvector is assumed to be normalized with respect to the generalized mass: 
 

{𝑥𝑥}𝑇𝑇[𝑀𝑀]{𝑥𝑥} = 1. (9) 

In a FE structural problem, [𝐾𝐾] is the stiffness matrix and [𝑀𝑀] can be either of the mass or 
differential stiffness matrix, based on the type of problem considered. The differentiation of this 
equation is due to Nelson [15,16] and the following equation is obtained: 

 

𝜆𝜆′ = {𝑥𝑥}𝑇𝑇([𝐾𝐾′] − 𝜆𝜆[𝑀𝑀′]){𝑥𝑥}. (10) 

The method requires the derivatives of the stiffness and mass (or differential stiffness) matrices. 
Because of that, such an approach has not been applied to shape sensitivity problems until now. 
However, a nonintrusive and element agnostic approach has been developed in this work to 
calculate the derivative of structural matrices based on the primary analysis matrices and the 
connectivity of the mesh. 
Applications and results 
Since some sensitivity methods may not work with repeated eigenvalues, both approaches have 
been here applied to a vibration problem involving repeated eigenvalues. A beam with a circular 
cross-section (𝑟𝑟 = 2.5 𝑚𝑚𝑚𝑚) and a length of 100 𝑚𝑚𝑚𝑚 has been considered. A Simply Supported-
Sliding boundary condition has been applied in order to validate the method even when the 
stiffness matrix is singular. A uniform mesh containing forty beam elements has been created. The 
length of the beam has been considered as a shape design variable and a uniform design velocity 
has been employed. The reference values have been found employing the NASTRAN Design 
Sensitivity and Optimization solution (SOL 200). The comparison of the eigenvalue derivative 
with respect to the reference one for both CSA and Nelson’s method is summarized in Table 1. 

 
Table 1: First ten elastic natural frequencies and their derivative: comparison between SOL 200, 

CSA and improved Nelson’s method. 

Mode 
ID 

Natural 
frequency [Hz] 

SOL 200 
Derivative [Hz] 

CSA Derivative 
[Hz/mm] 

Nelson’s derivative 
[Hz/mm] 

1,2 308.3 -6.1685 -6.1667 (-0.029 %) -6.1664 (-0.034 %) 
3,4 998.5 -19.972 -19.971 (-0.005 %) -19.971 (-0.005 %) 
5,6 2082 -41.642 -41.639 (-0.007 %) -41.640 (-0.005 %) 
7,8 3558 -71.162 -71.156 (-0.008 %) -71.161 (-0.001 %) 
9,10 5426 -108.52 -108.50 (-0.018 %) -108.52 ( - ) 

Both methods work with shape sensitivity problems and demonstrate very good accuracy. 
However, the CSA precision decreases if coarse meshes are employed. This is probably due to the 
many special gradients necessary for applying Eq. 7. They must be calculated numerically and 
their accuracy affects the final eigenvalue derivative estimation and also decreases the 
computational efficiency. Instead, Nelson’s method is accurate even with coarse meshes and has 
a higher computational efficiency. 

The two approaches have been then applied to buckling problems. A 1 𝑚𝑚 long beam with a 
rectangular cross-section (8 𝑚𝑚𝑚𝑚 × 12 𝑚𝑚𝑚𝑚) has been here considered. A uniform mesh with 
twenty beam elements has been created. Several boundary conditions have been employed for the 
analysis: Simply Supported - Simply Supported (S-S), Clamped - Clamped (C-C), Clamped - Free 
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(C-F), Clamped - Guided (C-G), and Simply Supported - Guided (S-G). The buckling eigenvalues 
along with their derivatives are summarized in Table 2. The CSA and improved Nelson’s method 
have been compared with the analytical results. 

 
Table 2: Buckling eigenvalues and their derivative with respect to the beam length. CSA and 

enhanced Nelson's method comparison with analytical results. 

Boundary 
Conditions 

Eigenvalue 
[N] 

Analytical derivative 
[N/mm] 

CSA derivative 
[N/mm] 

Nelson’s derivative 
[N/mm] 

S-S 359.29 -0.71857 -0.72480 (0.867 %) -0.71857 (-) 
C-C 1437.16 -2.87428 -3.02699 (5.313 %) -2.87423 (-0.002 %) 
C-F 89.821 -0.17964 -0.18011 (0.262 %) -0.17963 (-0.006 %) 
C-G 359.29 -0.71857 -0.72761 (1.258 %) -0.71857 (-) 
S-G 89.821 -0.17964 -0.18011 (0.262 %) -0.17963 (-0.006 %) 

 
Nelson’s results perfectly match the analytical derivative, while CSA exhibits accuracy 

limitations even with enough fine meshes. In fact, when particularizing Eq. 7 to buckling problems, 
even more spatial gradients than vibration problems are required. As a result, Nelson’s method is 
strongly suggested for this kind of application. 
Conclusions 
This work presented alternative methods to calculate shape design derivatives of beam eigenvalue 
problems. Two innovative solutions have been developed and investigated: the CSA and the 
enhanced Nelson's method. Both approaches have been successfully applied and validated. 
However, the CSA exhibited some limitations, especially in the buckling case. Nelson's method, 
on the contrary, has shown excellent accuracy, and very good computational efficiency. The 
enhanced Nelson's method can be successfully used in shape sensitivity problems and integrated 
into design optimization software. Future works will show the application of both approaches to 
plate and three-dimensional FE models. 
References 
[1] J. Iott, R.T. Haftka, H.M. Adelman, Selecting step sizes in sensitivity analysis by finite 
differences, National Aeronautics and Space Administration (NASA). NASA-TM-86382 (1985) 
[2] P.E. Gill, W. Murray, M.H. Wright, Practical optimization, SIAM -Society for Industrial and 
Applied Mathematics, Philadelphia, 2019. ISBN: 978-1-61197-559-8 
[3] R.T. Haftka, H.M. Adelman, Recent developments in structural sensitivity analysis, 
Structural optimization. 1 (1989) 137-151. https://doi.org/10.1007/BF01637334 
[4] L.B. Rall, G.F. Corliss, Computational Differentiation: Techniques, Applications, and Tools, 
SIAM - Society for Industrial and Applied Mathematics. 89 (1996) 1-18.  
[5] C.C. Margossian, A review of automatic differentiation and its efficient implementation, 
Wiley interdisciplinary reviews: data mining and knowledge discovery. 9 (2019). 
https://doi.org/10.1002/widm.1305  
[6] J.R.R.A. Martins, P. Sturdza, J.J. Alonso, The complex-step derivative approximation, ACM 
Transactions on Mathematical Software (TOMS). 29 (2003) 245-262. 
https://doi.org/10.1145/838250.838251 
[7] K. Dems, Z. Mróz, Variational approach by means of adjoint systems to structural 
optimization and sensitivity analysis - II: Structure shape variation, International Journal of 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 42 (2024) 38-42  https://doi.org/10.21741/9781644903193-9 
 

 
42 

Solids and Structures, Elsevier. 20 (1984) 527-552. https://doi.org/10.1016/0020-
7683(84)90026-X 
[8] K. Dems, R.T. Haftka, Two approaches to sensitivity analysis for shape variation of 
structures, Mechanics of Structures and Machines, Taylor & Francis. 16 (1988) 501-522. 
https://doi.org/10.1080/08905458808960274 
[9] K.K. Choi, N.H. Kim, Structural sensitivity analysis and optimization 1: linear systems, 
Mechanical Engineering Series, Springer, New York, 2004. https://doi.org/10.1007/b138709 
[10] J. Borggaard, J. Burns, A PDE sensitivity equation method for optimal aerodynamic design, 
Journal of Computational Physics, Elsevier. 50 (1997) 366-384. 
https://doi.org/10.1006/jcph.1997.5743 
[11] R. Duvigneau, D. Pelletier, On accurate boundary conditions for a shape sensitivity equation 
method, International journal for numerical methods in fluids, Wiley Online Library. 136 (2006) 
147-164. https://doi.org/10.1002/fld.1048 
[12] M.D. Kulkarni, R.A. Canfield, M.J. Patil, Nonintrusive continuum sensitivity analysis for 
fluid applications, Journal of Computational Physics, Elsevier. 403 (2020). 
https://doi.org/10.1016/j.jcp.2019.109066 
[13] D.M. Cross, R.A. Canfield, Local continuum shape sensitivity with spatial gradient 
reconstruction, Structural and Multidisciplinary Optimization, Springer. 50 (2014) 975-1000. 
https://doi.org/10.1007/s00158-014-1092-0 
[14] D.M. Cross, R.A. Canfield, Local continuum shape sensitivity with spatial gradient 
reconstruction for nonlinear analysis, Structural and Multidisciplinary Optimization, Springer. 51 
(2015) 849-865. https://doi.org/10.1007/s00158-014-1178-8 
[15] R.B. Nelson, Simplified calculation of eigenvector derivatives, AIAA journal. 14 (1976) 
1201-1205. https://doi.org/10.2514/3.7211 
[16] R.L. Dailey, Eigenvector derivatives with repeated eigenvalues, AIAA journal. 27 (1989) 
486-491. https://doi.org/10.2514/3.10137 
 
 
 


	Continuum sensitivity analysis and improved Nelson’s method for beam shape eigensensitivities
	Introduction
	Differentiation of the analytical eigenvalue problem
	Differentiation of the numerical eigenvalue problem
	Applications and results
	Conclusions
	References


