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Abstract. The present work proposes a higher-order plate finite element model for the three-
dimensional modal analysis of hyperelastic structures. Refined higher-order 2D models are defined 
in the well-established Carrera Unified Formulation (CUF) framework, coupled with the classical 
hyperelastic constitutive law modeling based on the strain energy function approach. Matrix forms 
of governing equations for static nonlinear analysis and modal analysis around nontrivial 
equilibrium conditions are carried out using the Principle of Virtual Displacements (PVD). The 
primary investigation of the following study is about the natural frequencies and modal shapes 
exhibited by hyperelastic soft structures subjected to pre-stress conditions. 
Introduction 
In recent years, renewed interest in soft materials in diverse fields, including mechanical, 
aeronautical, robotics engineering, and biological applications, has led to the development of new 
and efficient computational models for numerical simulations. The enhanced elastic properties of 
soft hyperelastic structures have attracted many researchers, and the dynamic features of 
hyperelastic materials have garnered increased attention. These features of hyperelastic structures 
generally lead to highly nonlinear equilibrium equations that do not allow closed-form solutions 
for static or dynamic problems. Furthermore, classical structural theories for beams and plates have 
been proven inadequate when considering large strains and nonlinear constitutive law. In this 
context, the Finite Element Method (FEM) allows a wide range of investigations in terms of 
material properties, geometries and topology, frequency analysis, and the design phase of 
components. Exploring the modal behavior of soft hyperelastic structures involves studying pre-
stressed conditions and analyzing how large strains or rotations affect natural frequencies and 
mode shapes. Existing reference solutions in this field typically focus on simple geometries or 
considered boundary conditions. While the literature has extensively covered various beam-like or 
plate-like structures, the adoption of classical FEM models, such as hexahedral solid models, is 
generally associated with an inadequate computational cost required by the numerical simulation. 
In this scenario, finite element models based on Carrera Unified Formulation (CUF) for the modal 
analysis of isotropic hyperelastic materials are proposed here. CUF allows, starting from the 
definition of the displacement field by a recursive index notation, the definition of FE governing 
equations in terms of invariants to the theory of structure approximation and kinematics 
assumption [1,2,3]. Refined fully nonlinear structural models are defined then straightforwardly 
[4]. The capabilities of the proposed plate CUF models are investigated through the static and 
modal analysis of hyperelastic thin and thick silicon plates, for which mode aberration is observed. 
Hyperelastic constitutive modeling 
Hyperelastic models adopted in the present work are defined under the classical strain energy 
function approach based on the Flory decomposition of kinematic measures. The strain energy 
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density function, the deformation gradient F and the right Cauchy-Green strain tensor C are then 
written as: 
Ψ(𝐂𝐂) = Ψvol(J) + Ψiso(𝐂𝐂�) = U(J) + Ψ�(I1� , I2�) (1) 
𝐅𝐅 = 𝐅𝐅𝑣𝑣𝑣𝑣𝑣𝑣𝐅𝐅�   →   𝐅𝐅𝑣𝑣𝑣𝑣𝑣𝑣 = J

1
3𝐈𝐈     𝐅𝐅� = J−

1
3𝑭𝑭 (2) 

𝐂𝐂 = 𝐂𝐂𝑣𝑣𝑣𝑣𝑣𝑣𝐂𝐂�   →   𝐂𝐂𝑣𝑣𝑣𝑣𝑣𝑣 = J
2
3𝐈𝐈     𝐂𝐂� = J−

2
3𝐂𝐂 (3) 

where 𝐼𝐼1� , 𝐼𝐼2�  are the invariants of the isochoric part of the right Cauchy-Green tensor 𝐂𝐂� and J is the 
volume ratio, the determinant of the deformation gradient. In the present work, the decoupled 
Mooney-Rivlin model for silicon rubber is taken into account 
Ψ(𝐂𝐂) = c10(I1� − 3) + c01(I2� − 3) + 1

D1
(J − 1)2 (4) 

where D1 = 2/k is the incompressibility parameter defined from the bulk modulus k. Stress measure 
represented by the second Piola-Kirchoff stress tensor (PK2) is defined in its decoupled form: 
𝐒𝐒 = ∂Ψ

∂𝐂𝐂
= 𝐒𝐒𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐒𝐒𝑖𝑖𝑖𝑖𝑖𝑖 = Jp𝐂𝐂−1 + J−

2
3  �𝐈𝐈 − 1

3
𝐂𝐂−1 ⊗ 𝐂𝐂� : 𝐒𝐒� = Jp𝐂𝐂−1  + J−

2
3 𝐏𝐏: 𝐒𝐒� (5) 

where P is the fourth-order projection tensor adopted in the Total Lagrangian Formulation finite 
element formulation, p is the hydrostatic pressure and 𝐒𝐒� is the rescaled/modified PK2 stress tensor. 
Due to the presence of both material and geometrical nonlinearities, an incremental formulation is 
here adopted. Following the procedure by Holzapfel [5], the constitutive equation Eq. (5) is 
rewritten in its differential form: 
Δ𝐒𝐒 = 𝐶𝐶 1

2
Δ𝐂𝐂 = 𝐶𝐶Δ𝐄𝐄 (6) 

where 𝐶𝐶 is the so-called tangent elasticity tensor, defined starting the linearization of the 
constitutive law. The complete derivation of the explicit expression of the tangent elasticity tensor 
(or material Jacobian tensor) can be found again in [5]. 
Higher-order structural theories 
The Unified Formulation for static and modal analysis of hyperelastic soft structures has been 
already proposed in [6], in which hyperelastic higher-order beam finite element models are 
established. In the following, modal analysis of compressible hyperelastic plate structures are 
performed adopting higher-order plate (2D) models. In CUF, the three-dimensional displacement 
field is expressed as a polynomial expansion of the generalized nodal displacements, coupling 
approximation expansion theories along the thickness with kinematic models along the plate mid-
surface: 
𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝜏𝜏(𝑧𝑧)𝒖𝒖𝜏𝜏(𝑥𝑥,𝑦𝑦) = 𝐹𝐹𝜏𝜏(𝑧𝑧)𝑁𝑁𝑖𝑖(𝑥𝑥,𝑦𝑦)𝒖𝒖𝜏𝜏𝜏𝜏   τ = 1, … , M,    i = 1, … , Nn (8) 

where M is the related to the order of the structural theory adopted, 𝑭𝑭𝝉𝝉(𝒛𝒛) is the set of expansion 
functions, representing the theory of structure approximation, 𝑵𝑵𝒊𝒊(𝒙𝒙,𝒚𝒚) is the set of 2D shape 
functions of the discrete Nn finite nodes along the mid-surface, and finally 𝐮𝐮𝝉𝝉𝐢𝐢 is the vector of 
generalized displacement component.. In the present work, Lagrange Expansion (LE) class are 
considered, starting from the set of Lagrange's polynomials [2].  
Governing equations 
The equilibrium equations for the static and undamped vibration problem are carried out by means 
of the Principle of Virtual Displacements (PVD), written as: 
 δℒ𝒾𝒾𝒾𝒾ℯ + δℒ𝒾𝒾𝒾𝒾𝒾𝒾 = δℒℯ𝓍𝓍𝓍𝓍 (9) 

where 𝓛𝓛𝓲𝓲𝓲𝓲𝓲𝓲 is the work done by inertial forces, 𝓛𝓛𝓲𝓲𝓲𝓲𝓲𝓲 and 𝓛𝓛𝓮𝓮𝓮𝓮𝓮𝓮 represents work done by internal 
and external forces, and 𝜹𝜹 denotes the virtual variation. Adopting the same indices notation 
introduced for the displacement field also for the Green-Lagrange strain tensor and the virtual 
quantities, one can derive the FN (Fundamental Nuclei) of the internal and external forces vector 
and mass matrix, obtaining the matrix form of the governing equation. 
 δ𝑢𝑢𝑠𝑠𝑠𝑠:   𝑴𝑴τ𝑠𝑠𝑠𝑠𝑠𝑠𝑢̈𝑢τ𝑖𝑖 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠 = 𝑭𝑭𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠  →  𝑴𝑴𝒖̈𝒖 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑭𝑭𝑒𝑒𝑒𝑒𝑒𝑒 (9) 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 42 (2024) 26-30  https://doi.org/10.21741/9781644903193-7 
 

 
28 

The nonlinear governing equation is then linearized to implement an incremental numerical 
solver based on path-following constraints. Through a Taylor expansion truncated at the first order, 
one can derive the incremental equation: 
 𝑴𝑴𝛥𝛥𝒖̈𝒖 + 𝑲𝑲𝑇𝑇𝛥𝛥𝒖𝒖 = −𝝓𝝓𝑟𝑟𝑟𝑟𝑟𝑟(𝒖𝒖0,𝒖𝒖0̈,𝒑𝒑0) + 𝑰𝑰𝛥𝛥𝛥𝛥𝒑𝒑𝑟𝑟𝑟𝑟𝑟𝑟 (9) 
Finally, imposing a harmonic solution of the type 𝚫𝚫𝒖𝒖 = 𝚽𝚽𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊, the classical linear eigenvalue 

problem is then obtained, that gives the natural frequencies and the normal modes of vibration 
around the computed non-trivial equilibrium state: 
 (𝑲𝑲𝑇𝑇 − 𝜔𝜔2𝑴𝑴)𝜱𝜱 = 0 (9) 
More detail about the derivation of the undamped vibration problem around non-trivial 

equilibrium conditions of hyperelastic soft structures can be found in [7], where the FN of the 
tangent stiffness matrix and the complete linearization procedure is detailed. 
Numerical results 
The investigated case study involves a clamped square plate of compressible hyperelastic material. 
Small amplitude vibrations around non-trivial equilibrium conditions are explored considering a 
thick square plate with a lateral side of a=b=1 and h=0.1 m. In the further investigations, the 
material density of the hyperelastic beam is set to a typical value for silicone rubber ρ =
1200 kg/m3. The fitted material parameters of the Mooney-Rivlin model for silicon rubber are 
fixed to c10 =  0.14 MPa and 𝑐𝑐01 =  0.023 MPa [7], and Poisson's ratio ν = 0.4. The 
mathematical models utilized different LE models along the plate thickness, namely the LE2 
parabolic and LE3 cubic expansion models, and various finite element discretizations around the 
plate mid-surface to assess the accuracy and efficiency of the proposed model. The relative 
percentage difference and the computational costs in terms of DOF (degrees of freedom) will be 
further presented. The numerical results obtained via higher-order 2D CUF plate elements are 
compared with the 3D solution carried out through ABAQUS commercial software. First, a free 
vibration analysis around the undeformed equilibrium condition is performed to analyze the 
natural frequencies and modal shapes of the thick plate. Table 1 shows the first five natural 
frequencies, comparing the results with the solution obtained with the 3D model in ABAQUS. The 
most accurate model involves 20x20 Q9 elements along the mid-surface, which will be further 
adopted as discretization. Furthermore, the nonlinear static analysis is performed, considering a 
uniform pressure at the top surface to establish nontrivial equilibrium conditions. Figure (1) 
illustrates the equilibrium curve obtained using higher-order 2D CUF elements and the 3D 
ABAQUS solution. Around the marked nontrivial equilibrium conditions, the undamped vibration 
problem is solved, computing the natural frequencies for increasing applied pressure values. Figure 
(2) presents the first eight natural frequencies and their variations with increasing applied pressure, 
with results compared to the proposed 3D solution. Accurate results are consistently achieved, and 
mode aberration is observed. 
Conclusions 
This manuscript discusses the undamped vibration problem around non-trivial equilibrium 
conditions of hyperelastic plate structures. First, soft hyperelastic plates have been modeled using 
higher-order CUF-based finite elements and have proven to guarantee accurate results regarding 
displacements and modal behavior of thin and thick structures. Mode aberration is observed, such 
as crossing, as observed in the proposed study, for specific critical values of the applied load. 
Future works will investigate hyperelastic multilayered soft plates and shells, the modal analysis 
of bio-inspired structures, and the effect of fiber reinforcement. 
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Table 1: Cantilever compressible silicon thick plate: free vibration problem around the 
undeformed condition, convergence analysis on the first five natural frequencies [Hz]. 

Comparison between 2D CUF results and 3D ABAQUS results. 

Mesh Mode 1 Mode2 Mode 3 Mode 4 Mode 5 DOFs 
10x10 Q9 0.44210.417% 1.04210.809% 2.60300.876% 2.79480.156% 3.29000.629% 3969 
12x12 Q9 0.44180.003% 1.04110.708% 2.60020.768% 2.79370.115% 3.28800.568% 5625 
15x15 Q9 0.44150.271% 1.04030.626% 2.59790.682% 2.79270.079% 3.28660.524% 8649 
20x20 Q9 0.44120.211% 1.03960.565% 2.59620..616% 2.79190.051% 3.28560.495% 15129 
ABQ 3D 
12500 
C3D20R 

0.4403 1.0338 2.5804 2.7905 3.2695 177633 

 

 
Figure 1: Cantilever compressible silicon thick plate: equilibrium paths 

 

 

(a) Modes 1-4 (b) Modes 5-8 

Figure 2: Cantilever compressible silicon plate, case L/h = 10: variation of the first eight 
natural frequencies for increasing value of the applied pressure. 
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