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Abstract. The increasing population of space debris in Low-Earth Orbit (LEO) poses a significant 
threat to operational satellites and future space endeavors. To address this challenge, leading 
aerospace companies worldwide are developing on-orbit servicing and debris removal satellites. 
These servicer satellites will be capable of complex orbital operations, such as capturing tumbling 
defunct spacecraft. A fundamental requirement for the success of such missions is the development 
of accurate spacecraft pose estimation, which provides the servicer's guidance and control system 
with precise information about the target spacecraft's attitude. This paper addresses the study of 
such a pipeline using deep learning and classical computer vision algorithms. 
Introduction 
The accurate estimation of the relative position and attitude (i.e., pose) of a spaceborne object 
using minimal hardware is an enabling technology for current and future on-orbit servicing and 
debris removal missions [1]. These missions play a crucial role in mitigating the growing problem 
of space debris in Low-Earth Orbit (LEO) [2]. Among them are RemoveDEBRIS by the Surrey 
Space Centre [3], Clearspace-1 by the Swiss start-up ‘Clearspace SA’ [4], CRD2 by JAXA [5], 
and EROSS by Thales Alenia Space [6]. Efficient mission planning for such operations requires 
trajectory optimization techniques, especially when considering refueling or resupply scenarios 
involving in-situ resource utilization (ISRU) on celestial bodies like the Moon [7]. These complex 
maneuvers necessitate not only meticulously planned trajectories but also real-time awareness of 
the target spacecraft's pose throughout the mission. By providing crucial information about the 
target spacecraft's pose relative to the servicing spacecraft, pose estimation systems serve as the 
critical "eyes" for the mission.  This information is continuously fed into the guidance system. The 
guidance system utilizes the pose data alongside the pre-programmed mission plan and real-time 
sensor data to constantly adjust the spacecraft's thrusters, ensuring it stays on the optimized 
trajectory and executes maneuvers with high precision [8]. Depending on the scenario, the target 
spacecraft can be either cooperative, utilizing radio links or fiducials, or non-cooperative with 
known or unknown geometry. Recently, non-cooperative target pose estimation has gained interest 
from the aerospace society due to the accumulation of inactive satellites and debris in low Earth 
orbit. However, the current go-to solution for performing pose estimation of target spacecraft 
involves cumbersome and expensive LIDARs, which will likely hinder the widespread adoption 
of space debris removal technology. One of the most promising alternatives to LIDARs to date is 
the use of monocular cameras combined with computer vision algorithms, providing a cheap and 
lightweight solution. To address this, ESA organized the international Satellite Pose Estimation 
competition (SPEC2021), the main objective of which was to find the most efficient way to 
estimate the pose of known uncooperative spacecraft using monocular cameras [9]. SPEC2021 
exploits the next-generation spacecraft pose estimation dataset (SPEED+), consisting of labeled 
images from computer graphics and real-life sources. To solve this problem, each participant 
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implemented deep learning (DL) techniques as opposed to classical image processing methods. 
This choice stems from the fact that the latter are too computationally expensive for on-board 
processors and are not fully robust to the complex space environment, such as harsh lighting 
conditions. Neural networks, on the other hand, are able to learn complex features that are 
sometimes impossible to hardcode by humans. However, when trained on synthetic data, DL 
models typically fail when tested on real images, leading to the so-called domain gap problem [9]. 

This paper proposes a DL-based pipeline for the pose estimation of uncooperative target 
spacecraft with known geometry in the pre-capture phase prior to docking. Our method is based 
on state-of-the-art pose estimation network (YOLOv8-pose) [10] and Perspective-n-Point (PnP) 
solvers [11]. PnP solvers are well-established algorithms that efficiently calculate the 3D pose of 
an object in a scene given its corresponding 2D keypoints and a 3D model of the object. The 
scenario considered in this paper is a synthetic video stream of the client uncooperative spacecraft 
approaching the servicer until reaching a minimum relative distance of 20 cm, which corresponds 
to the length of the servicer gripper. To generate a realistic training dataset for the deep learning 
network we utilized Blender, a popular open-source 3D creation suite [12],  and CAD model of 
the Envisat spacecraft [13]. The Envisat model in Blender was then animated to simulate the 
approach of a client spacecraft towards a servicer spacecraft, mimicking the pre-capture phase 
prior to docking. 
Methods 
Data preparation. The generation of synthetic images is realized through the open-source 3D 
graphical tool Blender. Firstly, this choice is made because of its integrated Cycles rendering 
engine, which is physically based and uses ray tracing. Secondly, Blender offers a built-in Python 
API, enabling control over the software via Python scripting mode. Another useful tool utilized is 
the third-party Starfish Python library, which facilitates the automatic generation of thousands of 
images along with pose information for the object in each image. Users can define the object’s 
pose or have it randomly distributed across frames. Moreover, the Starfish library allows for the 
variation of parameters such as background and lighting orientation in each generated image. After 
the image dataset is generated with corresponding annotations regarding the position and 
orientation of the spacecraft, it is necessary to preprocess the dataset and add additional 
information to the annotation file to enable its use in training neural networks. Specifically, 
knowing the 3D coordinates of the spacecraft and its pose information, it is possible to retrieve the 
pixel coordinates of each keypoint using perspective projection equation: 
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where: 
−𝑥𝑥𝐵𝐵,𝑦𝑦𝐵𝐵, 𝑧𝑧𝐵𝐵 are the 3 d coordinates of the spacecraft keypoint 

−[𝑅𝑅(𝐪𝐪𝐁𝐁𝐁𝐁)𝐭𝐭𝐁𝐁𝐁𝐁] is roto-translation vector 

−𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦, 𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦 are the parameters of the intrinsic matrix 
−𝑢𝑢𝑖𝑖𝑤𝑤𝑖𝑖, 𝑣𝑣𝑖𝑖𝑤𝑤𝑖𝑖 are the pixel coordinates of the spacecraft key-point 

Pose estimation pipeline. The pipeline can be summarized in 2 following steps according to the 
figure 1: 
1. Deployment of Keypoint Regression Network (KRN). In this paper we decided to leverage 
ultralytics API which uses YOLOv8-pose neural network architecture. It gives the users to choose 
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between different model size and can be easily transformed to openvvino format for the faster 
inference on the low-power compute devices. The KRN yields a 1 × 2N vector encoding the 2D 
positions of N keypoints.   
2. Retrieved 2D keypoints together with the available 3d wireframe model of the spacecraft can 
be fed into off the-shelf PnP solver in order to calculate the position and orientation of the 
spacecraft. 

The selected ground-truth keypoints were strategically chosen to ensure their presence within 
the field of view (FOV) of the monocular camera. Moreover, a minimum of four points is required 
to execute the PnP (Perspective-n-Point) algorithm effectively. 

 
Figure 1: 2-stage pose estimation pipeline. 

On the figure 2 there is visualization of some images from the validation test set. It is evident 
that the KRN based on YOLOv8-pose architecture is able to output the right posses with the very 
high probability. 

 

Figure 2: Samples from validation batch during the training of KRN. 
The retrieved poses of the spacecraft are compared  to the ground truth data according to the 

metrics from the SPEC2021 competition: 
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Where 𝑡𝑡𝐵𝐵𝐵𝐵𝑖𝑖, 𝑞𝑞𝑖𝑖 and 𝑡̂𝑡𝐵𝐵𝐵𝐵𝑖𝑖, 𝑞𝑞�𝑖𝑖  are the ground truth and estimated position vectors and attitude 
quaternions respectively. 
Results 
A dataset comprising 5000 images from Envisat, each with a resolution of 1920×1200, was 
created. This dataset was then partitioned into three subsets: a training set containing 3500 images, 
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a validation set containing 1000 images, and a test set containing 500 images. Considering the 
limitations of low-power on-board spacecraft processors, we opted for the smallest YOLOv8n-
pose network model available from the ultralytics API ( See table 1). 
  

Table 1: Characteristics of YOLOv8-pose models with different sizes 

Model size 
(pixels) 

mAPpose 

50-95 
mAPpose 

50 
Speed 
CPU ONNX 

(ms) 

Speed 
A100 

TensorRT 

(ms) 

params 
(M) 

FLOPs 
(B) 

YOLOv8n-
pose 

640 50.4 80.1 131.8 1.18 3.3 9.2 

YOLOv8s-
pose 

640 60.0 86.2 233.2 1.42 11.6 30.2 

YOLOv8m-
pose 

640 65.0 88.8 456.3 2.00 26.4 81.0 

 
Training was performed on Nvidia GeForce RTX 3090 for 100 epochs with the minimum train 

and validation pose loses of 0.055 and 0.033 respectively (figure 3). Batch size was set of 32 
images.  

 
Figure 3: Train and validation pose losses. 

The predicted keypoints for each image frame were then fed into the PnP solver to retrieve the 
poses for the spacecraft across the test set of 500 images dedicated to final validation. Preliminary 
results are presented in Table 2 and will be improved upon in future work. 
 

Table 2: Evaluation metrics according to the SPEC2021 

Mean translation error 𝑒𝑒𝑡𝑡 (m) 0.01907 
Mean rotation error 𝑒𝑒𝑞𝑞 (deg) 14.89 
Mean SPEED score 𝐸𝐸 0.29 
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