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Abstract. The research focuses on design of origami deployable structures for space applications. 
The aim is to acquire new and in-depth knowledge on modeling deployable structures with simple 
origami folding patterns to enhance the reliability of subsystem design requiring the use of such 
structures. Mastery of the subject will also enable the analysis of the compatibility of flexible thin 
structures with electronic components such as flexible rigid PCBs, solar cells, or antennas. The 
most used method of modelling for the analysis of flexible structures is based on bar-and-hinge 
models (reduced degree-of-freedom models) which, although accurately describe the macroscopic 
behavior, are unable to capture local behavior at critical points such as folds and interface points 
with bonded rigid-flexible elements. Consequently, a refined analysis of the system is carried out 
by integrating the finite element Carrera Unified Formulation (CUF) in the bar-and-hinge model, 
which allows to reduce the number of degrees of freedom with respect to classical Finite Element 
Method (FEM). Such formulation is necessary for two main reasons. Firstly, integrating this 
formulation with classical reduced degrees of freedom models will allow analyzing the local 
behavior of the deployable structure while still keeping computational costs low. Secondly, the 
CUF model is well suited for modeling thin multilayer structures, consisting of layers of very 
different materials, thanks to the possibility of selecting an arbitrary approximation order along 
the thickness that is independent of the order of the model adopted in the plane. Such a powerful 
tool will also allow analyzing the behavior at the interface between distinct layers subjected to 
both mechanical and coupled thermomechanical stresses, a critical condition in space applications. 
The final step of the modeling involves research on controlled deployment methods, deepened to 
ensure greater system reliability and morphing capabilities. The developed models will be 
experimentally validated through test campaigns aimed at verifying that the stress and strain states 
resulting from the analyses are comparable to those evaluated in experimental tests. These tests 
will include, among others, deployment tests of structures with origami patterns or classic folding 
patterns to evaluate opening stresses and cyclic thermal fatigue tests to evaluate thermomechanical 
stresses at the interface between distinct layers. The comparison will provide the numerical model 
with additional robustness and make it a tool capable of predicting complex behaviors otherwise 
investigable only through experimental tests. 
Introduction 
The space market has undergone significant transformations in the last two decades. The reduction 
in satellite launch costs and the pivotal role played by major private players have drastically 
accelerated the space race in both scientific research and service/business sectors. The future of 
the space economy appears increasingly promising, thanks to new technologies and growing 
interest from both agencies and private entities in accessing space. 

Research and technological development have accompanied the sector's growth, consistently 
providing new solutions to the stringent requirements of spacecraft design and reducing production 
and launch costs.  
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In this context, deployable structures and Gossamers play a fundamental role in the design of both 
small and large satellites. These structures are designed to launch objects with significant volumes 
and surfaces while remaining compatible with the compactness requirements imposed by 
launchers. Given the numerous subsystems whose performance depends on their surface extension, 
these structures find applications in various fields, from power generation using solar panels to 
signal transmission with antennas, thermal control with thermal shields and radiative panels, and 
even propulsion and space based solar power generation for ground based business [1]. 

Although deployable structures are already employed in satellites and spacecraft and are of 
great technological and market interest, their modelling approach remains a topic of research. 
Specifically, for extensively large and origami-patterned thin structures, numerical models 
explaining their behaviour during operational life and deployment are challenging to represent 
using finite elements, making the computational calculation process cumbersome and complex.  
One solution to this issue is provided by reduced order models, which effectively represent the 
overall behavior of these structures but fall short in capturing local information. In the modeling 
of origami, the more widely used reduced order model is the bar-and-hinge, consisting of a 
simplification of the kinematics of foldable thin structure justified by the fact that the big-scale 
deformations are imposed by the geometry of the folds. The nonlinear elastic formulation for a 
general bar-and-hinge model introduced by Ke Liu and Glaucio H. Paulino [2] stands as one of 
the most advanced reduced models. 

Despite the accuracy in modeling the global behavior, a finer discretization of the structure is 
necessary to understand its local behaviors. A finite element shell model seems to be suitable for 
this purpose, but it presents two significant limitations. Firstly, a shell element models the structure 
through its thickness as a homogeneous entity, losing information about behavior across the 
thickness. Secondly, the computational cost of performing nonlinear dynamic analysis of the 
deployment of rigid-flexible origami structures is significant, especially if multiple shell elements 
are to be coupled to characterize the behavior of distinct layers across the thickness. There are few 
studies in the literature that employ finite element models for this purpose, with a clear preference 
towards reduced element analysis. 

Similar issues arise when conducting a multi-field analysis on the structure under consideration, 
such as thermal-structural coupling induced by thermomechanical stresses, a very common 
condition in the space field. Uncoupled thermoelasticity models (static, quasi-static, dynamic) are 
able to model the relationship between stresses/strains and temperature but are not suitable for 
conditions of high-speed thermomechanical loads. Coupled thermoelasticity models based, such 
as the one proposed by Green-Lindsay, come into play, allowing to capture the real physical 
behavior of the component through simulations of the interaction between the mechanical behavior 
of the elastic body and its temperature where the temporal derivatives of deformations appear in 
the heat equations. While these equations provide a significant advantage in terms of result 
accuracy, the coupled thermoelasticity problem entails very high computational costs, and finite 
element models become necessary. Such models can be further complex in the case of structures 
with real geometries and very complex boundary conditions, as well as composed of 
metamaterials, increasingly common in the aerospace field and difficult to model. 
Bar-and-Hinge Model 
The bar-and-hinge model is based on the principle of stationary potential energy and allows for 
the development of a nonlinear model in geometry and material characteristics for the analysis of 
large deformations in origami structures. The panel is discretized into a series of bar and hinge 
elements typically located at the folds of the pattern or the diagonal of the flexible faces. The 
discretization just described allows capturing the three fundamental behaviours of origami 
deformation: stretching, crease folding, and panel bending. 
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Figure 1: Miura-Ori bar-and-hinge model 

 
In the static case analysis, the potential energy of the system is expressed as: 

Π = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒  (1) 

where Ubar is the strain energy of the bar elements, Uspr is the energy stored in the springs modelling 
the folds and the out of plane bending behaviour of the structure, while Vext is the external work. 
In the dynamic case, the term Ek is introduced in the summation giving the potential energy and 
represents the kinetic energy of the system: 

Π = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑘𝑘 (2) 

In the same way as for the potential energy, the tangent stiffness matrix can be decomposed 
into two contributions as follows: 
 
𝑲𝑲(𝒖𝒖) = 𝑲𝑲𝑏𝑏𝑏𝑏𝑏𝑏(𝒖𝒖) + 𝑲𝑲𝑠𝑠𝑠𝑠𝑠𝑠(𝒖𝒖)                 (3) 

 
where Kbar is the stiffness associated with the bar elements while Kspr is the stiffness of the 
rotational springs modelling even the folding lines or the bending diagonal of the panel. 
Each term can in turn be expanded in several matrices:  
 
𝑲𝑲𝑏𝑏𝑏𝑏𝑏𝑏

(𝑒𝑒) = 𝑲𝑲𝐸𝐸
(𝑒𝑒) + 𝑲𝑲1

(𝑒𝑒) + 𝑲𝑲2
(𝑒𝑒) + 𝑲𝑲𝐺𝐺

(𝑒𝑒)                (4) 
 
𝑲𝑲𝑠𝑠𝑠𝑠𝑠𝑠

(𝑟𝑟) (𝒖𝒖) = 𝑲𝑲�𝑠𝑠𝑠𝑠𝑠𝑠
(𝑟𝑟) (𝒙𝒙) = 𝑘𝑘 𝑑𝑑𝑑𝑑

𝑑𝑑𝒙𝒙(𝑟𝑟) ⨂ 𝑘𝑘 𝑑𝑑𝑑𝑑
𝑑𝑑𝒙𝒙(𝑟𝑟) + 𝑀𝑀 𝑑𝑑2𝜃𝜃

𝑑𝑑�𝒙𝒙(𝑟𝑟)�
2               (5) 

 
As regards the bars, KE

(e) is the linear stiffness matrix, KG
(e) is the geometric stiffness matrix 

and (K1
(e) + K2

(e)) form the initial displacement matrix. Concerning spring elements, θ is the 
dihedral angle of the rotational spring, x(r) is the vector of nodal coordinates, while k is the tangent 
rotational stiffness of the element. 

Bar and hinge elements can be modelled by different constitutive relations. 
Odgen model can be implemented for the analysis of bar elements, according to the following 
expression: 
 
𝑊𝑊(𝐸𝐸) = 𝑊𝑊� (𝜆𝜆1,𝜆𝜆2, 𝜆𝜆3) = ∑ 𝜇𝜇𝑗𝑗

𝛼𝛼𝑗𝑗
(𝜆𝜆1

𝛼𝛼𝑗𝑗 + 𝜆𝜆2
𝛼𝛼𝑗𝑗 + 𝜆𝜆3

𝛼𝛼𝑗𝑗 − 3)𝑁𝑁
𝑗𝑗=1               (6) 

 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 42 (2024) 162-168  https://doi.org/10.21741/9781644903193-36 
 

 
165 

Where λi denotes the principal stretches and N, α and µ are the material properties. 
On the other hand, rotational hinges for origami structural analysis are usually modelled as 

linear elastic springs. The momentum generated in response to the external loads is as follows: 
 
𝑀𝑀 = 𝐿𝐿(𝑟𝑟)𝑘𝑘(𝜃𝜃 − 𝜃𝜃0)                  (7) 

 
where k is the rotational stiffness modulus per unit length along the axis and θ0 is the neutral angle 
at which the spring is in a stress-free condition. This relation can be generalized to implement the 
behaviour of nonlinear springs by modelling the stiffness as constant throughout most of its 
rotation range, while it reaches high values of stiffness in correspondence of a fully packed 
configuration of the origami. 

The resolution of such models relies on numerical computation algorithms such as the Newton-
Raphson method. The Merlin model for origami modeling employs a modified generalized 
displacement control algorithm directly derived from the arc length method. 
Carrera Unified Formulation 
The solution to the numerical computation problems highlighted in the introductory chapter is 
provided by the Carrera Unified Formulation (CUF). The choice to integrate the bar-and-hinge 
model with the finite element CUF is driven by the need to employ a local model for the detailed 
description of the behavior of deployable structures in space applications without the 
computational cost hindering analysis in reduced time frames. This formulation allows for deriving 
the governing equations in a compact way, it can decouple the level of accuracy in modeling along 
the thickness and in the plane of the thin structure, and it provides accurate solutions with a low 
number of Degrees Of Freedom (DOFs), without the need to resort to finite 3D elements of higher 
or lower order. 

Below is the formulation of the CUF model for a thin plate. Let's consider a generic plate 
structure described in a Cartesian coordinate system. Let's consider the mid-plane of the plate lying 
on the xy-plane, while the thickness of the plate extends along z. The displacement field of a two-
dimensional model in the CUF framework is described as a generic expansion of the generalized 
displacements (in the case of displacement-based theories) by arbitrary functions of the cross-
section coordinates: 

𝐮𝐮(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝐹𝐹𝝉𝝉(𝑧𝑧)𝐮𝐮𝜏𝜏(𝑥𝑥,𝑦𝑦)          𝜏𝜏 = 1, … ,𝑀𝑀  (8) 

where 𝑢𝑢 =  {𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧} is the vector of 3D displacements and 𝑢𝑢𝜏𝜏  =  {𝑢𝑢𝑥𝑥𝑥𝑥,𝑢𝑢𝑦𝑦𝑦𝑦,𝑢𝑢𝑧𝑧𝑧𝑧} is the vector 
of general displacements, M is the number of terms in the expansion, τ denotes a summation and 
the functions 𝐹𝐹𝝉𝝉(𝑧𝑧) define the approximation function along the thickness. The generalized 
displacements are function of the mid-plane coordinates and the expansion is conducted in the 
thickness direction z. 

The same formulation can be applied to thermomechanical and electromechanical problems for 
the multifield analysis of structures such as piezoelectric ones. 
The main advantage of CUF is that it allows to write the governing equations and the related finite 
element arrays in a compact and unified manner, which is formally an invariant with respect to the 
𝐹𝐹𝝉𝝉 functions 

In the case of 2D models, the discretization of generalized displacements on the mid-surface of 
the plate is made by means of the finite element method or other numerical methods.  
Generalized Theory of Thermoelasticity 
The CUF model can be employed in the thermomechanical analysis of components subjected to 
combined structural and thermal stresses [3]. The formulations of coupled thermoelasticity that 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 42 (2024) 162-168  https://doi.org/10.21741/9781644903193-36 
 

 
166 

best represent the stress state are those belonging to the category of the Generalized Theory of 
Thermoelasticity. 

According to Green-Lindsay (GL) and Lord-Shulman (LS) theories, the equation of motion of 
a 3D elastic body in physical coordinates (x, y, z) can be expressed in terms of displacement 
components as: 
 
(Cijkluk,l)j − �𝛽𝛽𝑖𝑖𝑖𝑖𝑇𝑇�𝑗𝑗 − �𝑡𝑡1𝛽𝛽𝑖𝑖𝑖𝑖𝑇̇𝑇�𝑗𝑗 + 𝑋𝑋𝑖𝑖 = ρi𝑢̈𝑢 + 𝜉𝜉𝑢̇𝑢𝑖𝑖            (12) 
 

Where Xi denotes the body forces per unit volume, ρ is the mass density, ζ is the damping 
coefficient of the material, 𝑢𝑢 indicates the displacement components vector, Cijkl is a fourth order 
tensor containing all the elastic coefficients of a general nonhomogeneous anisotropic material, β 
represents the second order tensor of thermoelastic moduli, T is the temperature change with 
respect to a reference temperature T0 and t is time. 

On the other hand, the energy equation can be expressed in terms of temperature and 
displacement fields as: 
 
𝜌𝜌𝜌𝜌(𝑡𝑡0 + 𝑡𝑡2)𝑇̈𝑇 + 𝜌𝜌𝜌𝜌𝑇̇𝑇 − 2𝑐̃𝑐𝑖𝑖𝑇̇𝑇𝑖𝑖 − �𝑘𝑘𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗�𝑖𝑖 + 𝑡𝑡0𝑇𝑇0𝛽𝛽𝑖𝑖𝑖𝑖𝑢̈𝑢𝑖𝑖𝑖𝑖 + 𝑇𝑇0𝛽𝛽𝑖𝑖𝑖𝑖𝑢̇𝑢𝑖𝑖𝑖𝑖 = 𝑅𝑅 + 𝑡𝑡0𝑅̇𝑅         (13) 
 

Where kij is the thermal conductivity tensor, t0 is the relaxation time associated with LS theory 
while 𝑐̃𝑐 is a relaxation time associated with GL theory, 𝑐𝑐 is the specific heat. 
The equations just reported constitute the governing system of equations for the generalized 
coupled thermoelasticity problems. 

By applying a finite element formulation through Galerkin approach in a 3D domain, the 
associated week formulation containing all the possible boundary conditions of the problem is the 
following: 
 
𝝈𝝈 = 𝑪𝑪𝑪𝑪 − 𝜷𝜷(𝑇𝑇 + 𝑡𝑡1𝑇̇𝑇)                 (14) 
 

The computational effort in solving the equation above is quite demanding because of the high 
number of degrees of freedom. To reduce the computational cost of such a problem without loosing 
in accuracy, refined 2D models can be implemented in the framework of the CUF presented in the 
previous paragraph. 

In the final system of equation coming from the approximation with CUF approach, the stiffness 
matrix assumes the following expression: 
 

𝑲𝑲 =  �
𝑲𝑲𝑈𝑈𝑈𝑈
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑲𝑲𝑈𝑈Θ

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

0 𝑲𝑲ΘΘ
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�                (15) 

 
The term K is the thermo-mechanical coupling term that models the mechanical stress induced 

by a thermal variation. The aim of the initial stages of the research path will be to implement the 
thermo-mechanical coupling term induced by a mechanical stress. 

These coupling terms, combined with the capabilities of the CUF to model multilayer structures, 
allow for a thorough understanding of the behavior at the interface between two layers of a 
laminate or the junction between different materials in general [4], thus enabling the prediction of 
debonding or delamination. 
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Preliminary results 
The case study considered for analysis is SolarCube, a flexible origami-inspired solar panel 
designed by Astradyne. The panel lends itself well to the type of analysis described due to the 
flexible nature of the substrate on which the rigid-flexible electronics are assembled. Moreover, 
the environment in which it operates is subject to significant temperature gradients, which can 
induce undesirable phenomena such as excessive relaxation of the substrate or delamination of 
material layers. 

The deployment dynamics will be analyzed using the bar-and-hinge model integrated with CUF 
and will be compared with results obtained through commercial software such as Ansys and the 
bar-and-hinge reduced model alone. Figure 2 shows the deployment sequence of the origami with 
Merlin 2 software (bar-and-hinge).  

 
Figure 2: SolarCube’s deployment phase. Figure reference: [7] 

 
The structure is discretized with 5 nodes and 8 bars for each face of the origami. As for the 

material properties assigned, these are partly derived from literature data and partly obtained from 
mechanical characterization tests conducted in the laboratory. Finally, the deployment dynamics 
are induced by a displacement constraint at the vertices of the origami. The result is the 
displacement-force curve in Figure 3, showing a slow and gradual increase in the force required 
to open the origami and a sudden peak of force corresponding to the deployed configuration. 

 
Figure 3: Deployment force path. Figure reference: [7] 

 
The integrated bar-and-hinge and CUF model aims to capture the detail of the thermo-

mechanical behavior of the panel at critical local points, potentially subject to delamination or 
concentrated stress. 
Innovation and significant results 
The first part of the research will focus on the thermo-mechanical numerical modeling of 
deployable metasurfaces for space applications. This modeling will include the two thermo-
mechanical coupling terms induced by mechanical and thermal stresses, as well as the 
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nonlinearities of the materials involved, considering the variation of their properties with 
temperature and fatigue conditions. Such analysis is essential in an environment like space, subject 
to a large number of thermal cycles over a wide range of temperatures. Further mastery of the 
results will be acquired by validating the model with experimental tests based on validation 
processes sanctioned by the ESA (European Space Agency) in the ECSS (European Cooperation 
for Space Standardization). 

Subsequently, finite element models for the dynamics of the deployment of the flexible 
structure will be carried. The coupling of the CUF with the bar-and-hinge model will allow, unlike 
common reduced models, to analyze the local behavior of the panel and predict stress 
concentration points that may cause damage to the panel or delamination between the layers of 
metamaterial. The CUF and bar-and-hinge model are aimed to preserve the low computational cost 
of reduced models, while incorporating localized analysis at pre-selected points of interest within 
the simulation. Moreover, the model is well suited for thermo-electro-mechanical modelling of 
active deployment systems involving smart material such as shape memory alloys, paving the way 
for the analysis of innovative deployment systems for origami-inspired deployable space 
structures. As in the case of the thermo-mechanical model, experimental validation tests of the 
numerical model will follow to certify the quality of the work done and refine the model to obtain 
a powerful and effective tool for numerical modeling of structures in both academic and industrial 
fields. 
References 
[1] Erica Rodgers, Ellen Gertsen, Jordan Sotudeh, Carie Mullins, Amanda Hernandez, Hahn Le, 
Phil Smith, and Nikolai Joseph, 2024, Space Based Solar Power, NASA, Report ID 
20230018600 
[2] Liu K, Paulino GH. 2017 Nonlinear mechanics of non-rigid origami: an efficient 
computational approach.Proc. R. Soc. A 473: 20170348. 
http://dx.doi.org/10.1098/rspa.2017.0348 
[3] A. Entezari, M. Filippi & E. Carrera (2017): Unified finite element approach for generalized 
coupled thermoelastic analysis of 3D beam-type structures, part 1: Equations and formulation, 
Journal of Thermal Stresses. https://doi.org/10.1080/01495739.2017.1336740 
[4] Vincent Voet, Frederik Van Loock, Christophe De Fruytier, Aude Simar, Thomas Pardoen, 
Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic 
component assemblies, International Journal of Fatigue, Volume 167, Part A, 2023, 107298, 
ISSN 0142-1123. https://doi.org/10.1016/j.ijfatigue.2022.107298. 
[5] Cinefra, M., Rubino, A. Assessment of New Adaptive Finite Elements Based on Carrera 
Unified Formulation for Meshes with Arbitrary Polygons. Aerotec. Missili Spaz. 102, 279–292 
(2023). https://doi.org/10.1007/s42496-023-00165-6 
[6] Scano, D., Carrera, E. & Petrolo, M. Use of the 3D Equilibrium Equations in the Free-Edge 
Analyses for Laminated Structures with the Variable Kinematics Approach. Aerotec. Missili 
Spaz. (2023). https://doi.org/10.1007/s42496-023-00177-2 
[7] Troise, Andrea. (2023). Reduced-order modelling of the deployment of a modified flasher 
origami for aerospace applications. 547-552. 10.21741/9781644902813-120. 
 

 
 


	Multilayer and multifield analysis of origami deployable structures
	Introduction
	Bar-and-Hinge Model
	Carrera Unified Formulation
	Generalized Theory of Thermoelasticity
	Innovation and significant results
	References


