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Abstract. Simplified formulations, particularly 1D models, are fundamental for reducing the 
computational cost typically required by structural analyses. The use of a limited number of nodal 
degrees of freedom has inevitable implications for the model’s capabilities and accuracy. 
Furthermore, the performance of a reduced formulation is strictly problem-dependent, and the 
choice of a specific set of primary unknowns must be weighted considering their influence on the 
accuracy of the results of interest. In this work, a procedure for the selection of the best 1D models 
to adopt for time-response analyses is investigated. Through the Axiomatic/Asymptotic Method 
(AAM), the influence of single unknowns is evaluated for a specific structural configuration, 
which can be described as a combination of aspect ratio, material, geometry, and boundary 
conditions. The finite element governing equations for every considered set of variables are 
obtained through the Carrera Unified Formulation (CUF). The main indicator for the quality of a 
theory is based on the evaluation of a certain number of natural frequencies. Dynamic response 
analyses are then carried out using the modal superposition method to further asses the 
performance of the selected best theories. 
Introduction 
The development of accurate reduced 1D models is a crucial topic in structural mechanics, and it 
is primarily tied to the need for computational cost reduction. Many efforts were made over the 
years to improve their capabilities and reduce the gap in accuracy with complete 3D formulations, 
resulting in a wide variety of approaches [1-4]. Among them, the adoption of higher-order 
polynomial expansions to describe the displacement field above the cross-section proved 
remarkably successful, allowing for a proper but still efficient modeling of more complex 
mechanical behaviors [5].  

However, the performances of higher-order theories (HOT) are strictly problem-dependent, and 
a further increase in the order of the expansion would result in undesired growth of computational 
demand. These aspects highlight the need for the definition of a theory selection approach able to 
optimize the number of variables to include in a model, identifying the most influential ones to opt 
for the derivation of accurate results concerning a specific application. 

In this direction, a powerful tool to guide the modeling process is the Axiomatic/Asymptotic 
Method [6-8]. By directly comparing the results stemming from different combinations of 
expansion terms and a reference solution, the AAM can inform about the achievable accuracy 
given the level of complexity and related computational cost of a specific theory. AAM-like 
procedures require many results to be compared. These can be conveniently obtained in the 
framework of the Carrera Unified Formulation [9], which provides a generalized methodology for 
the implementation of structural theories of any type and order, independently from the considered 
structural problem.  
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Finite Element Formulation 
For beam-like structures, the finite element models are built using the reference system presented 
in Fig. 1, with the x-z plane laying on the cross-section, referred to as Ω. 

 

 
 

Figure 1 - Reference coordinate system for beam model 
 

The displacement field can be expressed as: 
 

𝐮𝐮(x, y, z) = �ux, uy, uz�
T (1) 

 
In the framework of the Carrera Unified Formulation, 1D models can be refined to provide a 

better description of the cross-sectional mechanical behavior. The displacement field on the cross-
section at a specific y coordinate can be modeled by introducing expansion functions Fτ and Fs: 

 
𝐮𝐮(x, y, z) = Fτ(x, z)𝐮𝐮τ,              δ𝐮𝐮(x, y, z) = Fs(x, z)δ𝐮𝐮s (2) 

 
τ, s = 1, … , M 

 
The Einstein notation acts on subscripts τ and s. M denotes the order or number of terms of the 
expansion, δ is the variational operator used to express the virtual variations. Here, uτ represents 
the generalized displacement variables involved in the expansion functions (δus being their virtual 
variations). In this work, only expansion functions based on Taylor polynomials were used. 

The Finite Element discretization over the beam axis can be obtained by introducing the shape 
functions Ni,j. The previous equations thus become: 
 

𝐮𝐮(x, y, z) = Ni(y)Fτ(x, z)𝐪𝐪τi,    δ𝐮𝐮(x, y, z) = Nj(y)Fs(x, z)δ𝐪𝐪sj (3) 
 

τ, s = 1, … , M  i, j = 1, … , Nn 

 
where Nn is the number of FE nodes, qτi and δqsj are the vectors of nodal unknown variables. For 
a full beam model of order M=2, the first of Eqs. 3 can be written in extended form as: 

 
ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6 

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6 (4) 

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6 

 

with six nodal displacement variables for each component, resulting in a total of eighteen. 
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The Principle of Virtual Displacements (PVD) is used to derive the governing differential 
equations. The complete formulation of the dynamic problem can be obtained through a 
hierarchical and generalized assembly procedure [9] over all nodes, resulting in: 

 
𝐌𝐌𝐪̈𝐪(t) + 𝐊𝐊𝐊𝐊(t) = 𝐏𝐏(t) (5) 

 
The undamped dynamic problem can be solved using the mode superposition method [10, 11], 

which is more computationally efficient than direct integration schemes such as the Newmark 
method. The mode superposition method involves the transformation of Eq. 5 into modal 
coordinates. The finite element nodal point displacements are then obtained by superposition of 
the response in each mode.  
Axiomatic/Asymptotic Method 
Techniques like the Axiomatic/Asymptotic Method can be used to assess the impact of individual 
expansion terms on the model accuracy. By directly comparing the solutions obtained from all 
possible combinations of generalized unknown variables, the AAM can highlight the most 
influential terms given a particular structural configuration.  

The preliminary step of an Axiomatic/Asymptotic procedure is the selection of a reference 
solution, typically provided by a full high-order expansion or 3D formulation. 

The insights offered by the AAM can be conveniently summarized through the Best Theory 
Diagram, a graphical representation of the relationship between the number of adopted unknowns 
and achievable accuracy. 
Preliminary Results 
The proposed methodology is here introduced considering a simply-supported multi-bay box beam 
[12]. The sides of the section are b = 0.38 m and h = 0.14 m, with thickness of the wall t = 0.02 m 
and length L = 10b. An isotropic material was considered, with E=75 GPa, ν=0.33, and density ρ 
= 2700 kg/m3. The beam was discretized using 10 B4 elements, and only theories up to the fourth 
order were considered. The full fourth-order expansion (E4) was also used as the reference model. 
Considering that the E4 model has 45 nodal unknowns, 245 theories should have been compared.  

To reduce the required results, the corresponding expansion terms in all three displacement 
components were activated/deactivated together, thus requiring only 215 total computations. 
Furthermore, the constant and linear terms of the expansion were always kept active, for a final 
total of 212 compared theories. 

The selection of the best theories was performed using the average error over the first thirty 
natural frequencies: 
 

%EAVG =
1

30
∙� 100 ∙

�fi − fiE4�
fiE4

30

i=1

 (6) 

 
Table 1 provides the resulting best-performing models. A black triangle signals an active term of 
expansion. Follows the corresponding Best Theory Diagram in Fig. 2. 

Each determined best theory can then be tested through the comparison of the dynamic response 
to a time-varying load. For the presented case, two out-of-phase sinusoidal loads were applied at 
points P1 (b/2-t/2, L/2, h/2) and P2 (-b/2+t/2, L/2, -h/2), both with an amplitude F0 = 10000 N and 
ω = 5 rad/s. The vertical displacements over time at P1 obtained with some of the found Best 
Theories are compared in Fig. 3. The provided results demonstrate the weight that different 
expansion terms have on the solution accuracy for this specific structural case and the 
computational advantage that model optimization can guarantee. 
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Table 1 - Best Theories for simply-supported multi-bay box beam based on the average 
percentage error over the first thirty natural frequencies. 

 

 
 

          
 
 

 
 
 

 
 

Conclusions 
This work investigates a methodology for selecting the best beam models for a specific structural 
configuration.  

The Axiomatic/Asymptotic Method is employed to derive the best theories due to the marked 
problem dependence of the models’ accuracy.  

Free-vibration and time response analyses are considered, and a performance indicator based 
on the quality of the estimated natural frequencies is adopted. The study highlights the influence 
of specific expansion terms on the provided solutions' accuracy and the selection criterion's 
influence on the outcome of the AAM. 
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Figure 2 – Best Theory Diagram for 
simply-supported multi-bay box beam 
based on the average percentage error 
over the first thirty natural frequencies. 
 

Figure 3 – Time response for simply - 
supported multi-bay box beam, uz 

evaluated in P1. 
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