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Abstract. This paper presents solutions to coupled thermoelastic dynamic problems of beams 
subjected to thermal loads over time. A higher-order one-dimensional (1D) model in the 
framework of the Carrera Unified Formulation (CUF) is used. The study aims to provide accurate 
predictions for displacement fields and temperature changes within homogeneous isotropic 
structures under thermal loads. A numerical test case describing the influence of sudden heating 
on the response of beam structure is presented. The results of the quasi-static analysis are compared 
with the dynamic response. Different two-dimensional Lagrange expansions are used to discretize 
the beam cross-section. The approach used in this work simplifies the complex three-dimensional 
(3D) problem into a computationally efficient 1D model.  
Introduction 
The study of thermoelastic phenomena has gained significant interest in recent years, given its 
considerable importance in many engineering applications. In the aerospace sector, thermal stress 
may be significant given the extreme operating conditions components often face, characterized 
by high temperatures and rapid temperature fluctuations. The complex interplay between thermal 
effects and mechanical responses has led to the development of numerous models for studying 
thermoelastic problems. Static thermal loading involves stationary temperature distributions that 
affect component deformations, while quasi-static loading accounts for time-dependent 
temperature changes that lead to transient thermal stresses. On the other hand, dynamic 
thermoelasticity introduces additional complexities, such as inertial effects, as external 
thermomechanical loads fluctuate rapidly over time. 
     Traditionally, thermoelastic problems have been addressed using uncoupled theories, in which 
temperature and mechanical displacements are treated independently. Although these models offer 
computational simplicity, they may not accurately predict the behavior of aerospace structures 
under extreme operating conditions. As such, there is a growing need for more sophisticated 
theories of coupled thermoelasticity. 
     In 1956, Biot [1] presented the classical theory of thermoelasticity, according to which thermal 
disturbances propagate with infinite velocity within the structure. Afterwards, other theories, such 
as the Lord-Shulman (LS) [2] and Green-Lindsay (GL) [3] models, were developed that overcome 
the limitations of the classical theory. 
     The advent of numerical methods, particularly the finite element analysis, has enabled the 
accurate simulation of complex thermoelastic phenomena. This paper uses a refined 1D model 
based on the Carrera Unified Formulation [4]. This approach has demonstrated the ability to 
perform multi-field analysis, particularly thermomechanical analysis, on complex structures, such 
as beams or disks, in an accurate and computationally efficient way [5,6]. This paper shows how 
the FE-CUF 1D model allows for accurate coupled dynamic analysis using Newmark's implicit 
method for resolution. Some numerical results on quasi-static and dynamic problems on an 
isotropic, homogeneous beam subjected to impulsive thermal loading are presented. 
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Governing equations 
The first general governing equation of the coupled thermoelasticity is the equation of motion in a 
three-dimensional domain [7]: 
 
     𝜎𝜎𝑖𝑖𝑖𝑖,𝑗𝑗 + 𝑋𝑋𝑖𝑖 = 𝜌𝜌𝑢̈𝑢𝑖𝑖 + 𝜁𝜁𝑢̇𝑢𝑖𝑖                                                                                                                              (1) 
 
where 𝜎𝜎𝑖𝑖𝑖𝑖 is the stress component, 𝑋𝑋𝑖𝑖 is the volume forces and 𝑢𝑢𝑖𝑖 is the displacement component. 
𝜌𝜌 and 𝜁𝜁 are the density and damping coefficient, respectively. The derivative in space is defined 
by subscript (,) while the derivative in time is denoted by superscript (·). 
     The stress component is expressed by Hooke's law for a non-homogeneous anisotropic material 
as: 
 
     𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑝𝑝𝑝𝑝 − 𝛽𝛽𝑖𝑖𝑖𝑖(𝑇𝑇 + 𝑡𝑡1𝑇̇𝑇)                                                                                                           (2)                                                                                          
 
where 𝜖𝜖𝑝𝑝𝑝𝑝 is the strain component, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the 4th-order elasticity tensor, 𝑇𝑇 is the temperature 
change with respect to the reference temperature 𝑇𝑇0 and 𝑡𝑡1 is one of the two relaxation times 
predicted by Green-Lindsay (GL) theory. The parameter 𝛽𝛽𝑖𝑖𝑖𝑖 è il second-order tensor of 
termoelastic moduli. 
     The energy equation can be expressed as a function of displacements 𝑢𝑢𝑖𝑖 and temperature 𝑇𝑇 [7]: 
 
     𝜌𝜌𝜌𝜌(𝑡𝑡0 + 𝑡𝑡2)𝑇̈𝑇 + 𝜌𝜌𝜌𝜌𝑇̇𝑇 − 2𝑐̃𝑐𝑖𝑖𝑇̇𝑇,𝑖𝑖 − �𝜅𝜅𝑖𝑖𝑖𝑖𝑇𝑇,𝑗𝑗�,𝑖𝑖

+ 𝑡𝑡0𝑇𝑇0𝛽𝛽𝑖𝑖𝑖𝑖𝑢̈𝑢𝑖𝑖,𝑗𝑗 + 𝑇𝑇0𝛽𝛽𝑖𝑖𝑖𝑖𝑢̇𝑢𝑖𝑖,𝑗𝑗 = 𝑅𝑅 + 𝑡𝑡0𝑅̇𝑅                    (3) 
 
where 𝑐𝑐 is the specific heat, 𝑐̃𝑐 is a vector of material constants and 𝑡𝑡0 and 𝑡𝑡2 are the relaxation 
times relative to Lord-Shulman (LS) theory and Green-Lindsay (GL) theory, respectively. The 
parameter 𝜅𝜅𝑖𝑖𝑖𝑖 is the thermal conductivity tensor. 
     Eq. 1 and Eq. 3 represent the coupled governing equations of coupled thermoelasticity written 
in the most general form. To solve the two equations simultaneously, a finite element formulation 
is adopted using the virtual displacement principle (PVD) [4]: 
 
     𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 − 𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                             (4) 
 
where 𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖, 𝛿𝛿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 and 𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 are the internal, external, and inertial virtual works, respectively. 
     The displacement field 𝒖𝒖 and temperature variation 𝑇𝑇 can be expressed by CUF using the finite 
element method through the following relations [4]: 
 
     𝒖𝒖 = 𝑁𝑁𝑚𝑚𝐹𝐹𝜏𝜏𝑼𝑼𝑚𝑚𝑚𝑚;    𝑇𝑇 = 𝑁𝑁𝑚𝑚𝐹𝐹𝜏𝜏Θ𝑚𝑚𝑚𝑚                                                                                              (5) 
 
where 𝑁𝑁𝑚𝑚 are the shape functions, 𝐹𝐹𝜏𝜏 are the generic expansion functions and 𝑼𝑼𝑚𝑚𝑚𝑚 and Θ𝑚𝑚𝑚𝑚 are 
the generalized vector of displacements and the generalized temperature change, respectively. 
Different Lagrange expansions are used in this work. Using the equations written according to 
CUF and Hooke and geometric equations within the PVD, the governing equations can be written 
in the following matrix form: 
 

     �
𝑀𝑀𝑈𝑈𝑈𝑈
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0

𝑀𝑀𝜃𝜃𝜃𝜃
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑀𝑀𝜃𝜃𝜃𝜃

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� �
𝑈̈𝑈𝑙𝑙𝑙𝑙

𝛩̈𝛩𝑙𝑙𝑙𝑙� + �
𝐺𝐺𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐺𝐺𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� �𝑈̇𝑈

𝑙𝑙𝑙𝑙

𝛩̇𝛩𝑙𝑙𝑙𝑙
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𝐾𝐾𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐾𝐾𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

0 𝐾𝐾𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� �𝑈𝑈

𝑙𝑙𝑙𝑙

𝛩𝛩𝑙𝑙𝑙𝑙
� = �𝐹𝐹

𝑙𝑙𝑙𝑙

𝑄𝑄𝑙𝑙𝑙𝑙�              (6) 
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where the terms of the matrices are expressed through a condensed formulation that does not 
depend on the order of the model, the so-called fundamental nuclei. For brevity, the expressions 
for the matrix equation terms are not given in this paper but are explicitly presented in [7].   
     Newmark's method [8] is used for solving Eq. 6, which in compact form is written: 
 
     𝑲𝑲�𝒒𝒒𝑡𝑡+Δ𝑡𝑡 = 𝑹𝑹�𝑡𝑡+Δ𝑡𝑡                                                                                                                       (7) 
 
where 𝒒𝒒𝑡𝑡+Δ𝑡𝑡 is the vector of the unknowns of displacements and temperature, 𝑡𝑡 + Δ𝑡𝑡 is the time 
step, 𝑲𝑲�  is the effective stiffness matrix and 𝑹𝑹�𝑡𝑡+Δ𝑡𝑡 is the effective loads. The method involves 
solving the system iteratively for each instant of time. The explicit relations of the terms in the 
equation and more details of the method can be found in [8].  
Numerical results 
The case examined is an isotropic beam with a square cross-section clamped at one edge. The 
beam has a dimensionless length of L� = 0.5 and a section edge equal to l ̅ = 0.05. The clamped 
face is subject to a temperature change T�(x�, y� = 0, z�, t)̅ = 1 − e−100t̅, where 𝑡𝑡̅ is the dimensionless 
time. The previous parameters are given in the dimensionless form given the very small 
dimensions and times considered in this case. The relationships between dimensionless and 
dimensional parameters can be found in [5]. The material is aluminum and has the following 
characteristics: the Lamè constants are λ = 40.4 GPa, μ = 27 GPa and ρ = 2707 kg m−3, α =
23.1 ⋅ 10−6K−1, κ = 204 Wm−1K−1 [5]. The reference temperature is 𝑇𝑇0 = 293 𝐾𝐾. The model 
adopted consists of ten 4-nodes finite elements along the 𝑦𝑦-axis of the beam and different Lagrange 
elements to model the cross-section, such as 4-node bilinear (1L4), 9-node biquadratic (1L9), and 
16-node bicubic elements.  

The quasi-static response of the structure is initially analyzed. The time history of the 
dimensionless temperature and axial displacement in the midpoint of the structure are shown in 
Fig. 1.  

 
Figure 1: Comparison of nondimensional temperature and axial displacement results of quasi-

static analysis obtained through different Lagrange and Abaqus models. 
Solutions for different Lagrange models are compared with those obtained from the classical 

Euler-Bernoulli (EBBT) and Timoshenko (TBT) theories. The results are also compared with the 
quasi-static response obtained with Abaqus software. The comparison shows that the 1L9 model 
represents a good trade-off between accuracy and computational efficiency. 

In the same time range, the dynamic response using the generalized Lord-Shulman theory is 
shown in Fig. 2 compared with the quasi-static case. The dimensionless relaxation time of the LS 
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theory is assumed to be 𝑡𝑡̅ = 0.64. The inclusion of inertial effects results in fluctuations of 
temperature and displacement trends around the value obtained from the quasi-static case. In Fig. 
2, the dynamic response using the LS model is also compared with the results obtained from the 
classical dynamic theory. Unlike the classical theory, the LS model manages to predict temperature 
fluctuations before reaching the steady-state value. Furthermore, the classical theory 
underestimates the value of the displacement. The trends of temperature and axial displacements 
are verified through comparison with the solution proposed by Filippi et al. [5] shown in Fig. 2. 
 

 
Figure 2: Time history of temperature and axial displacement obtained from dynamic analysis 

compared with reference results [5] and the quasi-static case. 
Summary 
This paper presents some numerical results of coupled dynamic thermoelasticity on a 
homogeneous and isotropic beam. The trends of temperature change and displacements of the 
structure for the quasi-static and dynamic cases were obtained using a refined 1D model based on 
the Carrera Unified Formulation (CUF). The approach used was validated through comparison 
with a commercial code and reference solutions. The results show that by neglecting inertial 
effects, the quasi-static analysis cannot predict the temperature and displacement fluctuations 
inferred from the dynamic theory. In addition, using generalized theories such as the Lord-
Shulman model allows for a more accurate response of the structure by predicting oscillations in 
temperature that classical theory could not. 
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