
Aerospace Science and Engineering - IV Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 42 (2024) 66-71  https://doi.org/10.21741/9781644903193-15 
 

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

66 

Simulation of post-grasping operations in  
closed-chain configuration using Kane's method 

David Paolo Madonna1,a * 
1Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via 

Eudossiana 18, 00184 Rome, Italy 
adavidpaolo.madonna@uniroma1.it 

Keywords: Post-Grasping Operations, Multibody Closed-Chain Configuration, Space 
Manipulator System, Kane’s Method 

Abstract. This work focuses on techniques that enable the modeling of a multibody spacecraft in 
a closed-chain configuration. This scenario pertains to a space manipulator system equipped with 
two or more robotic arms that have grasped a target object. The dynamic equations of the 
multibody system, consisting of the chaser and target satellites, are derived using a Kane’s 
formulation for nonholonomic constrained systems. This formulation eliminates the need for 
including Lagrange’s multipliers in the set of equations. Numerical simulations of a post-grasping 
maneuver between a space manipulator system and a target satellite are conducted to validate the 
proposed formulation. 
Introduction 
Modeling multibody spacecraft in closed-chain configurations implies a higher level of complexity 
with respect to tree configurations. Various approaches are reviewed in Ref. [1], where an 
extensive comparison is conducted. Among all the strategies presented in this reference, the “cut 
joint” approach stands out as a compromise between physical consistency, measured in terms of 
conservation of mechanical energy (in the absence of dissipative effects), and computational 
efficiency. In this approach, a closed-chain is severed at an underactuated joint to form two 
separate branches in an open-chain configuration. At the cut joint, a holonomic constraint must be 
enforced to ensure the compatibility.  Different strategies exist to derive the dynamical equations 
for such systems. When employing a Lagrange’s approach, this results in a system of differential-
algebraic equations (DAE), where the Lagrange multipliers serve as the adjoint unknowns to 
recover the internal actions provided by the kinematic constraints.  However, a viable alternative 
is suggested in Ref. [2], introducing a novel version of Kane's equations tailored for constrained 
systems. This yields a dynamic system divided into two distinct components: an Ordinary 
Differential Equation (ODE) system comprising motion equations, and an algebraic system of 
constraint equations. The computation of the latter is only undertaken when explicitly required by 
the analysis tasks. In the context of this study, this Kane's formulation is employed to simulate a 
post-grasping scenario. The preparation for repairing a spinning out-of-service satellite is 
examined, considering a dual-arm space manipulator system (SMS) [3-4]. Initially, the de-
spinning process is executed, followed by reducing the relative distance between the target and 
chaser to a value that permits repairing. 
Kane’s formulation for constrained systems 
The Kane’s formulation reported in reference [2] can be applied to model mechanical systems 
characterized both by kinematic and nonholonomic constraints. However, kinematic constraints 
must first undergo a time derivation to be transformed into velocity constraints.  A multibody 
system characterized by n generalized coordinated qi (collected in the column vector 𝑞𝑞) and n 
generalized velocities ui (collected in the column vector 𝑢𝑢), which are linearly dependent on the 
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time derivative of the generalized coordinates [5], is considered. Then, if (n-p) velocity constraints 
are imposed, the set of n generalized velocities can be divided into two subsets: 𝑢𝑢𝐼𝐼 =
[𝑢𝑢1 ⋯ 𝑢𝑢𝑝𝑝]𝑇𝑇 and  𝑢𝑢𝐷𝐷 = [𝑢𝑢𝑝𝑝+1 ⋯ 𝑢𝑢𝑛𝑛]𝑇𝑇containing the independent and the dependent 
generalized velocities respectively. The constraint equations can be expressed as 

 

𝑢𝑢𝐷𝐷 = 𝐴𝐴 �𝑞𝑞, 𝑡𝑡� 𝑢𝑢𝐼𝐼 + 𝑏𝑏 �𝑞𝑞, 𝑡𝑡�,   (1) 
 

where 𝐴𝐴 ∈ ℝ(𝑛𝑛−𝑝𝑝)×𝑝𝑝 and 𝑏𝑏 ∈ ℝ𝑛𝑛−𝑝𝑝 both depend on the generalized coordinates and time t. It can 
be proven that, under the constraint equations (1), the Kane’s dynamical equations can be written 
as 
  
𝐹𝐹� + 𝐹𝐹�∗ = 𝐴𝐴2�𝐹𝐹 + 𝐹𝐹∗� = 0   (2) 
 

where 𝐹𝐹� ,𝐹𝐹�∗ ∈ ℝ𝑝𝑝 are the vectors of generalized active forces and generalized inertia forces [2] 
respectively defined for the constrained system, while 𝐹𝐹,𝐹𝐹∗ ∈ ℝ𝑛𝑛 are referred to the unconstrained 
system, and 𝐴𝐴2 = �𝐼𝐼𝑝𝑝×𝑝𝑝 𝐴𝐴𝑇𝑇� where 𝐼𝐼𝑝𝑝×𝑝𝑝 is the identity matrix of dimension p. The generalized 
inertia force vector can be rewritten as 
 

𝐹𝐹∗ = −𝑀𝑀��̱�𝑞, 𝑡𝑡��̱̇�𝑢 − 𝑛𝑛𝑛𝑛��̱�𝑞, �̱�𝑢, 𝑡𝑡�   (3) 
 

where 𝑀𝑀 ∈ ℝ𝑛𝑛×𝑛𝑛 is the generalized mass matrix, while 𝑛𝑛𝑛𝑛 ∈ ℝ𝑛𝑛 is the vector of nonlinear terms of 
dynamics, i.e. the terms that do not linearly depend on the time derivative of the generalized 
velocities. Substituting Eq. (3) in Eq. (2) one obtains 
 
𝐴𝐴2𝑀𝑀�̱̇�𝑢 = −𝐴𝐴2𝑛𝑛𝑛𝑛 + 𝐴𝐴2𝐹𝐹 .  (4) 
 
To incorporate constraint equation (1) into the system, it needs to undergo a time derivation to be 
expressed in the form of acceleration: 
 

�̇�𝑢𝐷𝐷 = 𝐴𝐴�̇�𝑢𝐼𝐼 + �̇�𝐴𝑢𝑢𝐼𝐼 + �̱̇�𝑏    ⇒   𝐴𝐴1�̇�𝑢 = �̇�𝐴𝑢𝑢𝐼𝐼 + �̱̇�𝑏   (5) 
 

where  𝐴𝐴1 = �−𝐴𝐴 𝐼𝐼(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)�. Hence, merging of Eqs. (4) and (5) leads to 
 

𝑇𝑇�̱̇�𝑢 = ���̇�𝐴𝑢𝑢𝐼𝐼 + �̱̇�𝑏�
𝑇𝑇

�𝐴𝐴2�−𝑛𝑛𝑛𝑛 + �̱�𝐹��
𝑇𝑇�
𝑇𝑇
   (6) 

 

where the matrix 𝑇𝑇 = �𝐴𝐴1𝑇𝑇 (𝐴𝐴2𝑀𝑀)𝑇𝑇�
𝑇𝑇
∈ ℝ𝑛𝑛×𝑛𝑛 is invertible (the proof is provided in Ref. [2]). 

Eq. (6) fully describes the motion of a constrained system, yet he does not offer any information 
about the constraint reactions. However, they can be easily evaluated after solving Eq. (6) through 
a back-substitution procedure. 
 
Application to the close-chain multibody configuration resolved via cut joint approach 
In the framework of Kane’s formulation, the dynamical equations for a closed-loop multibody 
spacecraft can be obtained through the cut joint approach [1]. The process involves opening a 
closed chain into two open chains at the location of an underactuated joint, while simultaneously 
enforcing kinematic constraints that are equivalent to the removed joint. The derivation of the 
dynamical equations is now presented for the specific case of a slider-crank mechanism However, 
it's worth noting that this approach is applicable to any closed-chain structure. 
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Figure 1: sketch of a slider-crank mechanism (a) before and (b) after the cut open procedure 
The sketch of a slider-crank mechanism is depicted in Fig. 1, (a) before and (b) after the cut-

open procedure. In the open configuration, the generalized coordinate vector is �̱�𝑞 =
[𝜃𝜃1 𝜃𝜃2 𝑠𝑠3]𝑇𝑇, where the angles 𝜃𝜃1, 𝜃𝜃2 and the displacement 𝑠𝑠3 are depicted in Fig. 1.b, and the 
generalized velocities are chosen to be the time derivative of the generalized coordinates. 
Following the Lagrange’s or the standard Kane’s methodology to derive the system dynamical 
equations [6], one obtains the same result, i.e. 
 
𝑀𝑀�̱̇�𝑢 + 𝑛𝑛𝑛𝑛 = �̱�𝐹 + 𝐹𝐹𝑐𝑐𝑐𝑐   (7) 
 
where 𝐹𝐹𝑐𝑐𝑐𝑐 is the generalized constraint reactions vector associated to the kinematic constraints that 
must be imposed to guarantee that the position and the velocity of Q3 always coincide position and 
velocity of C3. These constraints can be written in the following form: 
 

Φ̱��̱�𝑞� = 0̱   ⇒   �
𝑛𝑛1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃1 + 𝑛𝑛2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃2 − 𝑠𝑠3 = 0
𝑛𝑛1 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃1 + 𝑛𝑛2 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃2 = 0

   (8) 
 
where l1 and l2 are the lengths of the two links. Now, Eq. (8) can be incorporated in Eq. (7) using 
Lagrange’s multipliers or following the Kane’s logic described in the previous Section. In the first 
case, Eq. (8) is derived twice with respect to time to obtain 
 

Φ̱̈ ≡ 𝐷𝐷�̱̇�𝑢 = �̱�𝛾   (9) 
 

where 𝐷𝐷 ∈ ℝ(𝑛𝑛−𝑝𝑝)×𝑛𝑛 and �̱�𝛾 ∈ ℝ𝑛𝑛−𝑝𝑝. For this case study p=1 and n=3. Since the Lagrange’s 
multipliers vector �̱�𝜆 ∈ ℝ𝑛𝑛−𝑝𝑝 is defined such that 
 
𝐹𝐹𝑐𝑐𝑐𝑐 = −𝐷𝐷𝑇𝑇�̱�𝜆 , 
  (10) 
one finally obtains the following DAE system:  
 

�𝑀𝑀 𝐷𝐷𝑇𝑇

𝐷𝐷 0
� ��̱̇�𝑢�̱�𝜆� + �

𝑛𝑛𝑛𝑛
0̱ � = �

�̱�𝐹
�̱�𝛾� ,  (11) 

 
This system is composed of five differential-algebraic equations. On the other hand,  when 
utilizing the presented Kane’s method, initially, only one time derivative of Eq. (8) is performed 
to obtain 
 

Φ̱̇ ≡ 𝐶𝐶�̱�𝑢 = �̱�𝛽,   (12) 
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where 𝐶𝐶 ∈ ℝ(𝑛𝑛−𝑝𝑝)×𝑛𝑛 and �̱�𝛽 ∈ ℝ𝑛𝑛−𝑝𝑝. It is worth noting that Eq. (12) can be reconducted to the form 
of Eq. (1). In fact, for the case of kinematic constraints imposed in the cut joint approach, both �̱�𝑏 
and �̱�𝛽 are null vectors, so 
 

𝐶𝐶�̱�𝑢 = [𝐶𝐶𝐼𝐼 𝐶𝐶𝐷𝐷] �
𝑢𝑢𝐼𝐼
𝑢𝑢𝐷𝐷� = 𝐶𝐶𝐼𝐼𝑢𝑢𝐼𝐼 + 𝐶𝐶𝐷𝐷𝑢𝑢𝐷𝐷 = 0̱   ⇒   𝐴𝐴 = −𝐶𝐶𝐷𝐷−1𝐶𝐶𝐼𝐼  (13) 

 

where 𝐶𝐶𝐷𝐷 ∈ ℝ
(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) and 𝐶𝐶𝐼𝐼 ∈ ℝ

(𝑛𝑛−𝑝𝑝)×𝑝𝑝. Hence, following the steps described in the previous 
Section, one obtains a system which expression coincides with Eq. (6). Differently from Eq.  (11)
, the obtained system is composed of three ordinary differential equations that completely describe 
the motion of the mechanism.  
Numerical simulation of post-grasping scenario 
In this section, numerical results for a post-grasping scenario are presented. The simulation 
initiates after the dual-arm Space Manipulator System (SMS) has successfully grasped a target 
with a mass of 100 kg and a radius of 1 m, which is rotating 5 °/s. Due to the rotational motion of 
the target, the grasping maneuver was executed after the chaser had synchronized its rotational 
motion with that of the target. The illustration of the SMS and its physical properties is provided 
in Fig. 2 and Tables 1-2, respectively. The sequence of operations follows the subsequent steps: 
first, the chaser performs a de-spinning maneuver while maintaining the target at 1.5 m. This phase 
lasts for 180 seconds. Then, after 60 additional seconds where the final state of the de-spinning 
phase is maintained, a manipulation maneuver is carried out. During this maneuver, that lasts 120 
seconds, the relative distance between the target and the chaser is reduced from 1.5 m to 0.75 m. 
The mission concludes after another 240 seconds, during which where the spacecraft maintains 
the desired final state. Numerical results are reported in Figs. 3-5. The results show that both the 
de-spinning and the manipulation of the target are successfully achieved within the depicted time 
span. Furthermore, the control efforts are modest for this mission, facilitating straightforward 
implementation in terms of actuator sizing.  
Concluding remarks 
The problem of modeling closed-chain multibody spacecraft has been addressed. The proposed 
approach relies on (i) a formulation of Kane's equations for constrained systems and (ii) the cut 
joint procedure. The former enables a reduction in the dimensionality of the equation system while 
retaining an Ordinary Differential Equation (ODE) structure. Meanwhile, the latter represents a 
compromise between numerical efficiency and the physical coherence of the results. The process 
of applying the cut joint technique within the Kane's formulation for constrained systems 
framework has been outlined. A numerical simulation has been conducted to showcase the 
capabilities of the presented approach. 
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Figure 5: Attitude control torque components Figure 4: angles of the left arm 

0 200 400 600

time [s]

0

2

4

[°
/s

]

1

Figure 3: Attitude control torque components 
and absolute angular rate along b1 

 

 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 42 (2024) 66-71  https://doi.org/10.21741/9781644903193-15 
 

 
71 

[6] A. Pisculli, L. Felicetti, M. Sabatini, P. Gasbarri, G. B. Palmerini, A Hybrid Formulation for 
Modelling Multibody Spacecraft, Aerotecnica Missili & Spazio, Vol. 94, Pages. 91–101, 2015.  
https://doi.org/10.1007/BF03404692 
 


	Simulation of post-grasping operations in  closed-chain configuration using Kane's method
	Introduction
	Kane’s formulation for constrained systems
	Application to the close-chain multibody configuration resolved via cut joint approach
	Numerical simulation of post-grasping scenario
	Concluding remarks
	References


