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Abstract. Automatic Fiber Placement (AFP) enables spatial variation of fiber orientation, 
enhancing mechanical performance compared to traditional composites. Variable Angle Tow 
(VAT) or Variable Stiffness Composites (VSC) optimize structural efficiency, which is crucial for 
lightweight aerospace structures. However, it is important to consider that limitations resulting 
from the manufacturing process can significantly impact the design domain available. This study 
proposes a mixed-integer optimization approach integrating the Carrera Unified Formulation 
(CUF) to minimize laminate weight while meeting frequency performance. This research aims to 
determine the optimal number of layers and lamination angles, considering manufacturing 
constraints and evaluating the impact of the selection of structural theory on the solutions. 
Introduction 
In contrast to conventional straight fiber laminates, Variable Stiffness Composites (VSCs) provide 
designers with a notably expanded design space by enabling control over the fiber tows along 
conforming curvilinear paths. However, due to the inherently non-uniform stiffness properties of 
the computational domain, resulting in increased computational costs, it is imperative to develop 
suitable and efficient optimization and design tools. Groh and Weaver [1] addressed the issue of 
reducing the mass of VAT laminates produced by Continuous Tow Shearing (CTS). In particular, 
a genetic algorithm (GA) was combined with pattern searching, creating a hybrid optimization 
approach that reduced weight by 31% compared to traditional straight-fiber composites. Catapano 
et al. [2] proposed a two-level optimization strategy for VAT laminates that considers 
manufacturing requirements for Fused Filament Fabrication (FFF) and Continuous Filament 
Fabrication (CFF) techniques. The strategy involved multi-scale optimization and emphasized 
incorporating technological constraints into the design optimization process. In addition, Sánchez-
Majano and Pagani [3] implemented the Carrera Unified Formulation (CUF) to construct a 
surrogate that mimicked the objective function to maximize the buckling load and the fundamental 
frequency of the VAT plates. This method provided the advantage of obtaining a model whose 
accuracy was determined by the appropriate choice of the order of the structural theory adopted. 
Lastly, Pagani et al. [4] developed a surrogate optimization framework to maximize the first 
natural frequency of VAT laminates, taking into account the presence of gaps and overlaps by 
combining the CUF with the Defect Layer Method (DLM) [5] directly into the optimization 
process. 

This work aims to present a mixed-integer optimization strategy specifically designed to select 
the least-weight design of a VAT laminate while also maximizing the first natural frequency. The 
research has two main objectives: to determine how the manufacturing constraints affect the 
minimum number of layers needed to meet fundamental frequency requirements and to examine 
how the selection of structural theory affects optimal solutions. 
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Unified finite elements for VSCs 
In this work, CUF formalism is used to implement 2D FE. Specifically, as stated in [6], the 3D 
displacement field can be expressed using arbitrary through-the-thickness expansion functions 
𝑭𝑭𝝉𝝉(𝒛𝒛) as follows: 

𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝜏𝜏(𝑧𝑧)𝒖𝒖𝜏𝜏(𝑥𝑥,𝑦𝑦). 𝜏𝜏 = 1, … ,𝑀𝑀  (1) 

The symbol 𝑀𝑀 represents the number of expansion terms, and 𝒖𝒖𝜏𝜏(𝑥𝑥,𝑦𝑦) represents the vector 
containing the generalized displacements, with 𝜏𝜏 indicating summation. Examining multi-layered 
structures typically employs either an Equivalent-Single-Layer (ESL) or Layer-Wise (LW) 
approach. In this manuscript, ESL models utilize Taylor polynomials represented by 𝐹𝐹𝜏𝜏(𝑧𝑧); while 
LW employs Lagrange polynomials over individual layers and ensures the continuity of 
displacements at layer interfaces. Utilizing the FE and shape functions 𝑁𝑁𝑖𝑖(𝑥𝑥,𝑦𝑦), the displacement 
field becomes: 

𝒖𝒖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑁𝑁𝑖𝑖(𝑥𝑥,𝑦𝑦)𝐹𝐹𝜏𝜏(𝑧𝑧)𝒒𝒒𝜏𝜏𝜏𝜏(𝑥𝑥,𝑦𝑦). 𝑖𝑖 = 1, … ,𝑁𝑁𝑛𝑛  (2) 

In Eq. (2), 𝒒𝒒𝜏𝜏𝜏𝜏 are the unknown nodal variables, with 𝑁𝑁𝑛𝑛 denoting the number of nodes per 
element. This work employs 2D nine-node quadratic elements for the in plane discretization. 

The governing equations are derived using the Principle of Virtual Displacements (PVD), 
which asserts that the virtual variation of internal strain energy, 𝛿𝛿ℒ𝑖𝑖𝑖𝑖𝑖𝑖, equals the virtual work of 
external forces, 𝛿𝛿ℒ𝑒𝑒𝑒𝑒𝑒𝑒, minus inertia forces, 𝛿𝛿ℒ𝑖𝑖𝑖𝑖𝑖𝑖. Specifically, 𝛿𝛿ℒ𝑖𝑖𝑖𝑖𝑖𝑖 can be written as: 

𝛿𝛿ℒ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 �∫ 𝑫𝑫𝑇𝑇(𝑁𝑁𝑗𝑗𝐹𝐹𝑠𝑠) 𝑪𝑪�𝑫𝑫(𝑁𝑁𝑖𝑖𝐹𝐹𝜏𝜏)𝑉𝑉 𝑑𝑑𝑑𝑑�𝒒𝒒𝜏𝜏𝜏𝜏 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝒌𝒌0
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝒒𝒒𝜏𝜏𝜏𝜏, (3) 

where 𝒌𝒌0
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the 3 × 3 Fundamental Nucleus (FN) of the stiffness matrix, invariant regardless of 

2D shape function order and through-the-thickness expansion. 𝑫𝑫(⋅) is the differential operator 
matrix with geometric relations, and 𝑪𝑪� is the material stiffness matrix in the global reference  
frame, i.e., 𝑪𝑪� = 𝑻𝑻(𝑥𝑥, 𝑦𝑦)𝑇𝑇𝑪𝑪𝑪𝑪(𝑥𝑥, 𝑦𝑦). As fibers vary point-wise within the plane, the rotation matrix 
𝑻𝑻 also varies accordingly. The virtual work of the inertia forces can be expressed as: 

𝛿𝛿ℒ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 �∫ 𝜌𝜌𝑰𝑰𝑁𝑁𝑖𝑖𝑁𝑁𝑗𝑗𝐹𝐹𝜏𝜏𝐹𝐹𝑠𝑠𝑉𝑉 𝑑𝑑𝑑𝑑�𝒒̈𝒒𝜏𝜏𝜏𝜏 = 𝛿𝛿𝒒𝒒𝑠𝑠𝑠𝑠𝑇𝑇 𝒎𝒎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝒒̈𝒒𝜏𝜏𝜏𝜏, (4) 

in which 𝑰𝑰 denotes the 3 × 3 identity matrix and 𝒎𝒎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the 3 × 3 FN of the mass matrix. Thus, 
the undamped free vibration problem is expressed as follows: 

𝑴𝑴𝒒̈𝒒 + 𝑲𝑲𝑲𝑲 = 0.   (5) 

In Eq. (8), 𝑴𝑴 and 𝑲𝑲 are the overall mass and stiffness matrices, respectively, obtained by 
iterating over FN's with indices 𝑖𝑖, 𝑗𝑗, 𝜏𝜏 and 𝑠𝑠 to compute element-level matrices, which are then 
assembled for the global structure. By applying harmonic solutions 𝒒𝒒 = 𝒒𝒒�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, Eq. (8) becomes: 

(𝑲𝑲− 𝜔𝜔𝑖𝑖
𝟐𝟐𝑴𝑴)𝒒𝒒𝒊𝒊� = 0   (6) 

where 𝜔𝜔𝑖𝑖 and 𝒒𝒒�𝒊𝒊 are the 𝑖𝑖𝑡𝑡ℎ natural frequency and eigenvector, respectively. 
Optimization framework 
This manuscript considers the multi-objective optimization of VSCs, which aims to minimize the 
weight and, therefore, the number of layers in the laminate while maximizing the first natural 
frequency. The plies that make up the laminate are varied for each evaluation of the objective 
function, along with the lamination angles 𝑇𝑇0 and 𝑇𝑇1 for each layer considered. Following the 
linearly varying fiber formulation [7], 𝑇𝑇0 represents the fiber angle at the plate's center, while 𝑇𝑇1 
represents the angle at the edge. Both the unconstrained and the constrained problem are 
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considered. The maximum curvature of the AFP machine is chosen as the constraint of the 
optimization problem. Therefore, the local fiber curvature κ must be less than 𝜅𝜅𝑙𝑙𝑙𝑙𝑙𝑙 = 3.28 𝑚𝑚−1, 
as seen in Eq. (7). 

     𝜅𝜅 = 2(𝑇𝑇1−𝑇𝑇0)
𝑎𝑎

cos�(𝑇𝑇1 − 𝑇𝑇0) 𝑥𝑥
𝑎𝑎/2

+ 𝑇𝑇0� ≤ 3.28m−1                                                               (7) 

The NSGA-II algorithm is utilized to solve the optimization problem. The variables 𝑻𝑻𝟎𝟎 and 𝑻𝑻𝟏𝟏  
can continuously vary between -90° and 90°, while the number of plies 𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑 can discretely vary 
between 6 and 10 layers. At each iteration, input files for structural analysis are created, and the 
natural frequency is then evaluated using the CUF-based FE code, as described in Section 2. The 
process is repeated iteratively until convergence. 
Results 
This work aims to minimize the mass of a traditional 8-layer symmetrical straight fiber composite 
with optimum lamination θ = [0°, 90°, 0°, 90°]𝑆𝑆, found in [8], while also fulfilling first natural frequency 
performance. The width and length of the plate are 𝑎𝑎 = 𝑏𝑏 = 0.5 m, and each ply has a thickness of 
0.159 mm. A fully clamped boundary condition was imposed on all four sides. The reference mass 
is 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟  = 0.5247 kg, while the optimum frequency is  𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟  = 54.68 Hz. The convergence 
analysis performed in [4] suggests that a 6 x 6 Q9 FE mesh effectively captures the fundamental 
frequency, requiring relatively low computational effort, which facilitates the reduction of the 
computational burden associated with the optimization process. 
 

Table 1. Optimal design results for the unconstrained problem 

 
Table 1 presents the results of the multi-objective optimization for the unconstrained problem. 

As the structural theory is varied, the optimal lamination angles are shown. In addition, the 
implementation of VAT composites allows the use of a symmetrical 7-layer laminate, resulting in 
a mass reduction of 12.5% while maintaining approximately the same fundamental frequency as 
the reference model. 

 
Table 2. Optimal design results for the constrained problem (𝜿𝜿𝒍𝒍𝒍𝒍𝒍𝒍 = 3.28 𝒎𝒎−𝟏𝟏) 

 ESL – TE 1 ESL – TE 3 LW – LD2 
⟨𝑇𝑇0,𝑇𝑇1⟩1 [°] ⟨−86,−31⟩ ⟨−85,−31⟩ ⟨−85 − 30⟩ 
⟨𝑇𝑇0,𝑇𝑇1⟩2 [°] ⟨79,26⟩ ⟨72,22⟩ ⟨76,25⟩ 
⟨𝑇𝑇0,𝑇𝑇1⟩3 [°] ⟨−60,−12⟩ ⟨−61,−13⟩ ⟨−61,−13⟩ 
⟨𝑇𝑇0,𝑇𝑇1⟩4 [°] ⟨58,10⟩ ⟨70,20⟩ ⟨62,15⟩ 
𝑓𝑓1 [Hz] 52.42-4.12% 52.06-4.79% 52.01-4.87% 

mass [kg] 0.4591-12.5% 0.4591-12.5% 0.4591-12.5% 
 
As described in Section 3, Table 2 displays the optimal results for the constrained problem for 

both ESL and LW models. Similar to the previous case, a 12.5% reduction in mass is observed. 

 ESL – TE 1 ESL – TE 3 LW – LD2 
⟨𝑇𝑇0,𝑇𝑇1⟩1 [°] ⟨−90,6⟩ ⟨−90,7⟩ ⟨−90,6⟩ 
⟨𝑇𝑇0,𝑇𝑇1⟩2 [°] ⟨90,−9⟩ ⟨90,−9⟩ ⟨90,−9⟩ 
⟨𝑇𝑇0,𝑇𝑇1⟩3 [°] ⟨90,−9⟩ ⟨90,−8⟩ ⟨90,−9⟩ 
⟨𝑇𝑇0,𝑇𝑇1⟩4 [°] ⟨−90,6⟩ ⟨−90,8⟩ ⟨−90,6⟩ 
𝑓𝑓1 [Hz] 55.43+1.37% 54.99+0.57% 54.98+0.55% 

mass [kg] 0.4591-12.5% 0.4591-12.5% 0.4591-12.5% 
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However, due to the significant decrease in the design domain resulting from the limitation of the 
maximum bending radius of the AFP machine, the natural frequency is reduced by slightly more 
than 4% with respect to the reference. 
 

 
Figure 1. Pareto fronts for the unconstrained case (on the left) and for the constrained case (on 

the right) 
Figure 1 displays the Pareto fronts for the unconstrained and constrained problem as the 

structural theory changes. It should be noted that the mixed-integer optimization strategy produces 
discontinuous response surfaces, allowing each layer to be optimized independently. In the 
unconstrained case, achieving the same optimum frequency as the reference utilizing a layer less 
is possible. However, in the constrained case, this is not possible. Nevertheless, it is noted that it 
is feasible to obtain much higher frequencies, but with the same mass as the reference 
Conclusions  
This work presented a mixed-integer optimization framework for the least-weight design of VSCs, 
taking into account the design space restriction resulting from the AFP manufacturing 
process. As demonstrated in [3], the structural theory exhibits a weak dependence on the optimal 
lamination angles for each layer. Moreover, layer-wise optimization provides discontinuous 
response surfaces, enabling the implementation of high-fidelity models that offer significant 
advantages over alternative optimization approaches. 
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