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Abstract. Fused deposition modeling, a widely employed additive manufacturing method, has 
witnessed a significant trend towards printing advanced materials such as PEEK and PAEK in 
recent years. Research studies have demonstrated the significance of process thermal dynamics in 
influencing the mechanical and geometric properties of printed components. This paper introduces 
a real-time thermal monitoring system that comprehensively tracks the thermal history of the 
printed component. Additionally, a deep learning model is presented, capable of detecting defects 
during the printing process. The integration of this monitoring system in a closed-loop mode offers 
the advantage of real-time adjustments, facilitating an immediate enhancement in the quality of 
the printed parts based on the continuously measured thermal data and the identified defects. 
Beyond real-time improvements, the data output from the monitoring system holds immense 
potential for broader applications. It can be seamlessly integrated into simulation software, 
providing a valuable dataset that can be leveraged to predict the physical properties and the 
adhesion quality of the printed parts. 
Introduction  
Additive manufacturing, specifically the Fused Filament Fabrication (FFF) process, involves the 
conversion of 3D-designed components into tangible fabricated parts. The procedure starts with 
the creation of the part using 3D Computer-Aided Design (CAD) software. Subsequently, the 
design is transferred to a slicer, which generates the tool-path (G-Code). Finally, the machine 
executes the printing of the part based on the specified tool-path. The method consists of 
converting a solid filament into a semi-liquid substance through the application of a heated nozzle. 
Once the material reaches a molten state, it is deposited along a defined two-dimensional XY 
plane. The process advances layer by layer to construct a three-dimensional object. 

Additive manufacturing has gained a lot of importance in the last years, especially for high 
performance materials (PEEK, PAEK,...) that are used in a lot of applications (aerospace, defence, 
medical, …) as it showed the potential of fabricating multi-functional parts that are hard or 
sometimes impossible to be done using old technologies. 

Like any other technology, achieving consistently high-quality 3D printed parts that satisfy 
industry requirements, whether in terms of mechanical properties or geometric aspects, poses 
inherent challenges. 3D printed components are susceptible to various defects, including under-
extrusion, over-extrusion, spaghetti, and filament adhesion issues [1] as shown in Figure 1. 
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Figure 1 : Examples of defects in 3D printed parts 

At the moment the only possible solutions to qualify printed parts often involves the 
implementation of post-processing quality control systems either destructive or non-destructive, 
that are always very expensive. Otherwise, we can opt for visual inspection alone, which is more 
cost-effective but lacks a quantitative assessment of the defect and cannot penetrate the core of the 
part.  As examples of non-destructive methods, laser scanning systems that can be utilized to 
perform detailed dimensional inspections and identify deviations from the intended geometry, X-
ray and CT scanning methods to detect internal defects and assess the structural integrity of printed 
parts. Destructive testing methods includes tensile, compression, fatigue... 

As a consequence, considerable research has been undertaken to grasp the critical parameters 
impacting the quality of printed parts. Simultaneously, efforts have been directed towards 
identifying defects in real-time or during post-processing through the application of image 
processing algorithms or the utilization of deep learning models. Various configurations have been 
tested, employing optical or thermal cameras positioned alongside printers to achieve a 
comprehensive perspective of parts, demonstrating positive outcomes in terms of quality control. 

Single camera approach like camera coupled with computer vision techniques [2–5] or deep 
learning models [3,6–8] and fixed on the side view, can detect various macro extrusion AM defects 
(Blobs, Under-extrusion...), but this solution have its limitation since the printer head could 
obscure the view which make it difficult to always view the material as it is being deposited from 
the nozzle. 

Methods that uses algorithms for change detection or Siamese network [9] to calculate the 
similarity or the difference between a reference image and the real time image, can give high 
accurate results in addition to localize the defect. However, techniques related to similarity score, 
need one correct printed reference at least. This may be especially limiting for custom parts. 

Techniques like multi-camera 3D structured light scanning and digital image correlation offer 
the potential to compare 3D reconstructions of printed parts with digital models to identify 
dimensional inaccuracies. It offers high accuracy measurement but it is applied either on finished 
parts or layer by layer so it requires pausing the printing [10,11]. 

Within the context of this paper, we present a comprehensive monitoring system that 
emphasizes the critical role of thermal measurement in the 3D printing process. Our approach 
extends beyond thermal monitoring by incorporating a sophisticated deep learning model, 
specifically trained to detect defects in real-time during the printing process. The goal of this 
monitoring system is to generate a digital shadow of the printed components, facilitating the 
inspection during the post-processing phase. Furthermore, the system can be integrated seamlessly 
in close-loop mode, facilitating continuous adjustments and optimizations during the printing 
process, thereby enhancing the overall quality and reliability of the final printed components. 

This integrated approach positions our monitoring system as a robust solution for advancing 
the precision and quality assurance aspects of 3D printing technology. 
  



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 380-389  https://doi.org/10.21741/9781644903131-43 

 

 
382 

Experimental set-up and methods 
Thermal monitoring solution 
Our patented thermal monitoring system [12] comprises two thermal cameras securely attached to 
the printing tool, enabling a complete 360° view around the nozzle as shown in the Figure 2. The 
captured frames from these cameras are then transmitted to a processing unit, where they are 
seamlessly stitched together to create a cohesive and unique output image that encapsulates the 
entire thermal landscape.  

Additionally, the system measures and records the temperature only from the pixels located on 
the filament being deposited, storing this information in a file that includes a spatial point cloud of 
the printed part, with time-temperature evolution for each point. 

The system has also the capability to measure the temperature of the area where we intend to 
deposit the new material which is important to ensure a good adhesion quality of the part. 

 

 
Figure 2 : Schematic representation of the thermal monitoring system 

System configuration 
The innovative thermal monitoring system [12], engineered by COGIT COMPOSITES, is a 
sophisticated assembly featuring two high-performance thermal cameras. Operating seamlessly at 
an impressive 80 frames per second (FPS), these cameras are strategically mounted at a carefully 
determined angle around the printing tool. This strategic placement ensures a comprehensive 
coverage of thermal data throughout the printing process, these cameras generate a final stitched 
image with a resolution of approximately 528×370 pixels and ≈0.2 mm resolution in the printing 
plane. 

The camera resolution is adapted to the filament width. In this study, the printed filaments 
measure 0.7 mm in width, allowing for at least 3 pixels per filament. This resolution is necessary 
to ensure the selection of the pixel at the centre of the filament. In the case of smaller filaments, a 
higher camera resolution is required. Similarly, for the printing of wider filaments, such resolution 
is not necessary. 

To ensure the proper functioning of the thermal monitoring system, a series of calibration steps 
must be undertaken, encompassing the estimation of internal camera parameters (distortion 
coefficients and focal length.…).  

A Hand-Eye calibration also is performed to estimate the transformation between the cameras 
and the machine reference. To streamline this calibration process, a sophisticated procedure has 
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been designed to serve the specific requirements of the system and overcoming the constraint of 
the Cartesian machine, also a specific calibration object was adapted for thermal vision. 

To initiate the monitoring system, it is necessary to previously transmit the G-code of the part 
needs to be printed to the processing unit. In addition to the two thermal cameras, the real-time 
position of the tool must be provided to the system. Whenever the printing starts, the system starts 
scanning the thermal evolution of the filament being deposited and generating the 5D data, as 
illustrated in the diagram below Figure 3. 

 

 
Figure 3 : Thermal monitoring system functional diagram 

Data output 
As previously described, the system is capable of monitoring the real-time temperature before and 
after filament deposition, as showed in Figure 4.a. The red dots represent pixels measured 
following filament deposition, while the white dots represent pixels measured for the subsequent 
filament deposition. Those measured points are then represented in the Figure 4.b in another shape 
for easy understanding where the temperature is function of the distance from the extruder. In this 
new representation, the red curve corresponds to the red dots and the blue curve corresponds to 
the white dots.  

Additionally, all collected data is systematically recorded in an HDF5 file, organized into 
various datasets. 

 
• Dataset “Time”: It’s a 1D array of values corresponding to every instant t of the collected 

data. 
• Dataset “Position and Temperature”: It’s a 2D array, every row contains a list of [X, Y, Z, 

T°C] points measured at the instant t. 
• Dataset “Real Time Position”: It’s a 1D array of tool positions, every row contain the 

position collected at the instant t. 
• Dataset “Dataset Length”: It’s a 1D array of values, every row indicates the number of 

points that has been measured at the instant t (Note: this dataset is added for convenience 
because there are empty cells in the dataset “Position and Temperature”, due to variance in 
the number of points measured at every instant t).  

 
The Figure 4.c provides a clear representation of the file structure.  
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Figure 4 : Thermal measurement, points after deposition (red dots) and before deposition (white 

dots) (a). Temperature representation of the measured points in function of the distance to 
extruder (b). Stored HDF5 file structure (c) 

For the purpose of visually exploring the thermal history at different time, a dedicated script 
has been developed to replay the content stored within the generated HDF5 file. This 
representation allows obtaining a digital shadow that can be used to detect defects or validate the 
thermal history of the parts. The provided Figure 5 serves as an example of the output digital 
shadow that is presented at an instant t. 
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Figure 5 : Sample representation of digital shadow 

Defect detection 
As mentioned before, the capability of the monitoring system is expanded through the 
development of a deep learning model with the ability to detect defects in real-time. It is assumed 
that distinguishable features in thermal images captured during 3D printing can be utilized to 
identify various types of defects. This assumption is based on the understanding that patterns 
associated with each defect in thermal imaging may be recognized due to heat distribution, speed, 
flow rate, and movement during the printing process.  

As a result, an object detection model can achieve real-time and accurate detection and 
localization of defects, enabling the implementation of subsequent correction system. 

 
Data collection – Training 
The dataset comprises thermal images captured from videos recorded during the printing process. 
To introduce defects, intentional modifications to printing parameters were made, either in real-
time or by generating a modified G-Code using a python script. 

Subsequently, these videos have been processed, and images were extracted at a rate of 10 
frames per second to reduce redundancy. Before training, data augmentation techniques were 
applied to enhance the dataset. Existing methods from Albumentations [13] have been employed 
and two additional techniques have been developed: Custom Mosaic and Custom Cut Mix as 
shown in Figure 6. 

Custom Mosaic involves generating an image by combining four distinct parts from different 
random images, each containing defects. This approach allows the reduction of batch size 
effectively. 

In the context of Custom Cut Mix, the scenario presented a challenge with the original Cut Mix 
augmentation technique, given that the majority of objects were centred in each image, occupying 
various areas and sizes. The risk of cutting an empty portion from one image and pasting it onto 
an object, potentially obscuring it, was high. The implemented variation ensures that when cutting 
a random object from one image and pasting it onto another, the intersection between objects does 
not exceed 0.75, thereby preserving the integrity of the original object.  
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Figure 6 : Output of modified Cut Mix and Mosaic methods 

The images have been categorized into seven distinct classes (No printing, Non-stick filament, 
Stringing, Gaps, Inconsistent extrusion, Blobs, and Hot spot). Examples of each defect in thermal 
images can be found in Figure 7.a (The different classes have been chosen after doing tests and 
analyses on the thermal images in order to avoid model confusion) and the total number of images 
per class is presented in Figure 7.b. 

 
Figure 7 : Example of defects in thermal images (a), Number of images per class used for 

training (b) 
For training, an NVIDIA RTX A2000 GPU was used. A subset of 10% of the images (images 

with no defects) were retained to reduce the False Positives (FP), then dataset was divided into 
70% for training, 20% for validation and 10% for testing. 

 
Validation 
Following extensive testing, the model hyper parameters have been fine-tuned and optimal features 
for annotation have been identified.  

The ultimate model configuration yields a mAP50 of 0.91 and mAP50-95 of 0.72, as showed 
in the Figure 8. Additionally, the model achieved an inference speed of 5.1 ms per image on the 
validation dataset.  

The confusion matrix shown in  Figure 9 indicates favourable results across all classes, with 
only a slight confusion observed between hot spots and blobs. This confusion is expected, given 
the similar appearance of these defects in thermal images. 
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Figure 8 : Model evaluation curves 

 
Figure 9 : Model confusion matrix 

Results and discussion 
Despite the small number of images used for training, the final model successfully identified over 
90% of the defects on test videos as shown in Figure 10. Also the usage of the mosaic method 
resulted in a notable reduction in the required number of epochs, halving the training time while 
maintaining high accuracy. Furthermore, the use of MixUp augmentation with rotation and 
flipping increased the mAP50 by 3.2% while increased the mAP50-95 by 1.7%. 

Although thermal imaging has proven effective in detecting seven types of defects, there are 
still some cases where certain defects remain undetected. This highlights the importance of 
incorporating additional information, such as speed, flow rate, temperature evolution over time of 
the printed filament… One approach to address this is using multi-modal learning. 

An alternative approach is to combine optical imaging and thermal imaging, expanding the 
range of accessible features. This fusion not only increases detection precision but also facilitates 
the identification of additional defects. 
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Figure 10 : Examples of detected defects using the final model 

Conclusions 
In conclusion, we showed an in-situ thermal monitoring system capable of supervising the thermal 
evolution of the printed filament that also generates a digital shadow of the printed part. 

Additionally, a deep learning model trained to detect defects achieved high accuracy in 
detecting and localizing 7 types of defects. Future work for improving the system involves 
detecting other types of defects by adding additional information for multi-modal learning and also 
using the system in close loop-mode in order to apply correction to the printing. 
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