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Abstract. Cold spray (CS) is an innovative manufacturing technology designed to produce 
metallic layers on diverse materials. This process involves propelling metallic particles at 
supersonic speeds using pressurized gas, causing them to impact the target surface and achieve 
adhesion through mechanical interlocking between the powders and the substrate. Integrating 
Artificial Intelligence (AI) techniques can enhance the understanding and quality of this additive 
manufacturing process. This work focuses on predicting the characteristics of particle deformation 
upon collision by exploring multiple Machine Learning (ML) and Deep Learning (DL) techniques 
with the aim of identifying the most suitable approach. The used dataset is mixed data, composed 
of experimental data and  FEM data, generated by Finite Element models (FEM). The input 
parameters for the model are categorized into three macro-categories: process, powder, and 
substrate. The research aims to forecast particle behavior through this multidimensional approach 
and contribute valuable insights for optimizing the cold spray manufacturing process by applying 
DL methodologies. 
Introduction 
As an innovative production technique, cold spray stands out for its capability to deposit metallic 
layers onto diverse materials, unlocking possibilities for creating robust and firmly adherent metal 
coatings. The broad applications span various industries, from aerospace to manufacturing and 
beyond [1]. A crucial aspect of exploring the potential of cold spray lies in conducting 
comprehensive coating studies to understand the behavior and performance of these coatings on 
different surfaces or objects. The intricate mechanisms of bonding formation and deposit strength 
are influenced by numerous factors [2]. Traditionally, material characterization has relied on 
manual efforts, often hindered by the need for a centralized database containing information on 
material properties. This bottleneck can pose challenges, mainly when performing FEM analyses 
[3] on newly introduced materials and substrates. Predicting the ultimate characteristics of a 
coating is a complex task. This complexity arises from the intricate interplay of numerous factors. 
These factors encompass the metallic powder’s inherent properties, the polymeric substrates’ 
characteristics, and the specific spraying parameters selected for the process. The challenge lies in 
the intricate synergy of these elements, making it presently tricky to forecast the behavior of 
metallic particles upon impact with diverse substrates precisely. The intricate nature of these 
interactions necessitates a comprehensive understanding of material properties, substrate 
dynamics, and process conditions, highlighting the current limitations in accurately predicting the 
outcomes of such interactions. Addressing these challenges requires innovative approaches and 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 300-307  https://doi.org/10.21741/9781644903131-34 

 

 
301 

advanced modeling techniques to enhance our ability to anticipate and control the behavior of 
metallic particles during the coating process. 
Recognizing this limitation, the current study focuses on leveraging deep learning and broader 
artificial intelligence techniques. This study uses DL models to analyze a comprehensive material 
dataset comprising experimentally validated results, and genetic algorithms are employed to 
design the network architecture. The objective is to enable accurate predictions of FEM results 
across multiple materials, even those not initially included in the original dataset. The input 
parameters incorporated into the model are systematically grouped into three categories: process 
parameters, powder parameters, and substrate parameters. The selected output parameters, chosen 
with precision to capture the fundamental traits of the coating, are flattening and penetration. These 
parameters are significant as they directly influence the coating's uniformity and adhesion 
characteristics. This research aims to pioneer the integration of DL models with GAs to achieve 
two main objectives: 

- Firstly, the focus is on developing a sophisticated tool that predicts and enhances the 
characteristics of coatings. Through the iterative optimization facilitated by GAs, the DL 
models can refine their predictions and guide the enhancement of coating properties, thus 
advancing the capabilities of coating technologies; 

- Secondly, the research endeavors to expand the scope of automation in the coating process 
by training additional DL models. The goal is to support the capacity for complete 
automation in coating applications. 

Materials and methodologies 
Input and output parameters. The input parameters for the implemented strategies can be 
categorized into three main groups: impact velocity, encompassing various process parameters 
such as temperature, pressure, and stand-off distance; powder parameters (Yp), which, for metallic 
coatings on polymeric substrates, can be summarized by the yield strength of the powder material; 
and substrate parameters (Ys), that for polymeric substrates which are only deformed by the 
impact of the particles at low temperatures, can be characterized by the yield strength of the 
substrate material. The latter also considers the presence of fibers, which, when appropriately 
positioned beneath a matrix layer at least comparable in size to the powders, solely enhance the 
substrate stiffness, leading to a variation in yield strength. The output parameters under 
consideration include the particle penetration depth and flattening, measured by analyzing SEM 
micrographs of the coatings. Penetration depth refers to the extent to which a particle can traverse 
or penetrate a material or surface and evaluates the height of the particle upon the impact [Hs0]. 
The penetration depth was defined as 𝐻𝐻𝐻𝐻 [%] = (𝐻𝐻𝐻𝐻0−𝐻𝐻𝐻𝐻)

𝐻𝐻𝐻𝐻
 100. To assess the degree of powder 

flattening, the examination focused on the top surface of the coating. Using Image J software, the 
mean radius of the particles following a collision with the substrate (r) was measured. The 
percentage of particle flattening was calculated  𝑟𝑟/𝑟𝑟0 [%] = (𝑟𝑟−𝑟𝑟0)

𝑟𝑟0
100 , where r0 represents the 

mean radius of the particle before the impact. As regards the formation of the dataset, the ones 
used in this study were created using both finite element method (FEM) simulations and 
experimental data. The first training dataset consisted of 30% experimental data and 70% FEM 
data, which were combined. Further information on the FEM analysis performed is presented in 
previous works of the authors [9].  The second dataset only included FEM data. The test dataset 
for both models only consisted of experimental data, for both FEM and experimental dataset, ABS, 
PEEK, and PA66 were considered as substrate materials, while copper, aluminum, steel, and 
titanium were the powders employed. LPW South Europe provided all the spherical powders used 
in the deposition process. A low-pressure cold spray equipment called DYCOMET was used for 
the depositions. Air was used as the carrier gas based on previous research indicating no significant 
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differences when using other carrier gases. The samples were positioned on a platform, and a 
spraying gun attached to a robot (HIGH-Z S-400/T-CNC-Technik) was used remotely to spray the 
substrates perpendicularly. Table 1 highlights the process parameters and characteristics of the 
powders used in the experiments. 

 
Table 1. CS parameters employed for the experiments 

Inlet Gas temperature [°C] 100 - 400 100 - 400 100 - 400 

Standoff distance [mm] 10 - 4 10 - 4 10 - 4 

Inlet gas pressure [MPa] 0.5 - 0.6 0.5 - 0.6 0.5 - 0.6 

Gun traverse speed [mm s-

1] 
7.5 7.5 7.5 

 
DL models and Genetic algorithm approach 
GAs are optimization techniques inspired by the principles of evolutionary theory in biology. 
These algorithms mimic the process of natural selection, evolution, and genetic recombination 
observed in living organisms. By emulating the mechanisms of genetic variation, reproduction, 
and survival of the fittest, genetic algorithms strive to find optimal solutions to complex problems. 
This computational approach involves the generation of diverse solutions, their evaluation based 
on a defined fitness criterion, and the evolution of increasingly refined solutions over successive 
generations. Genetic algorithms have proven effective in solving various optimization challenges 
across various fields, leveraging the inherent adaptability and efficiency inspired by the biological 
processes that govern evolution [4]. GAs aim to construct a population of potential solutions for a 
given problem, employing a fitness function to evaluate the merit of each candidate solution. The 
algorithm then identifies the best solutions to form a new population, perpetuating this iterative 
process and refining the solutions. Essential operations characterize each GA iteration:  

- initialization: the algorithm initiates by randomly populating the pool of potential 
solutions;  

- selection: optimal parents are chosen from the existing population based on their fitness. 
- crossover: genetic material from the current population is recombined to generate novel 

solutions;  
- mutation: random changes to the genetic material are introduced to prevent the algorithm 

from getting trapped in local optima, fostering new genetic variations; 
- evaluation: the fitness of each solution is compared to the target, which could be based on 

factors such as the number of generations or the fitness of the best solution; 
- replacement: the current population is replaced with a new generation of solutions, and this 

process is repeated until a satisfactory solution is found or after several generations. 
In this scenario, we used the GAs and their related terminology and operations to design the 

architecture of the network, rather than optimizing the network's hyperparameters. A neural 
network is a computational model inspired by the structure and functioning of the human brain. It 
consists of interconnected nodes, often called neurons or artificial neurons, organized into layers. 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 300-307  https://doi.org/10.21741/9781644903131-34 

 

 
303 

The fundamental building blocks are the input layer, hidden layers (if any), and the output layer. 
In a neural network, information flows through the network feedforward, with each node 
connection having an associated weight. The network processes input data through these weighted 
connections, applying activation functions at each node to introduce non-linearity and complexity. 
Neural networks can learn from data through training, where the weights are adjusted based on the 
error between predicted and actual outputs. This learning ability allows neural networks to 
generalize patterns and predict or classify new, unseen data. The entity Ei is represented as a vector 
Ei = {F1, . . . , Fm} comprising m features. Each feature Fj of Ei indicates a gene. The Genome of 
Ei encompasses the complete set of genes. The Population at time t, denoted as P(t) = {E1, . . . , 
En}, is the collection of entities. To achieve an adequately expanded network architecture in the 
experiment, the initial genome size was set to ten, ensuring the presence of the minimum layers 
needed for executing a CNN. Each gene corresponds to a specific Matlab CNN network layer: 
input, dropout, batch norm, cross-chan norm, 2D-convolution, RELU, softmax, and Fully 
Connected. Chromosomes are represented by arrays, with each cell indicating the presence or 
absence of a characteristic (feature) within the entity. A feature represents one of the CNN layers. 
Activation of a feature (array cell) incorporates the associated layer into the network, while 
inactivity excludes the layer when the feature is not expressed. Due to the operation mutation, each 
feature Fj may or may not be expressed by Ei, resulting in the presence of both silent and expressed 
genes. In this context, the training was conducted using a 5% validation and 10% test cross-
validation approach to assess the performance of the models and ensure robustness and 
generalization. This involved the division of the dataset into multiple subsets, with 5% of the data 
reserved for validation and 10% for testing.  

To assess the effectiveness of the DL approaches, we computed several performance metrics, 
including the Root-mean-square error (RMSE) [5], R-squared [6], Mean Squared Error (MSE) [7], 
and Mean Absolute Error (MAE) [8]. RMSE is derived from the squared mean error and is a metric 
sensitive to outliers. R-squared serves as a goodness-of-fit metric for linear regression models, 
indicating the proportion of variance in the dependent variable explained by the independent 
variables. It quantifies the strength of the association between the model and the dependent 
variable. MSE reflects the mean squared difference between observed and estimated data values. 
On the other hand, MAE signifies the distance between predicted and measured values. Lower 
values for these metrics indicate higher model accuracy. 
Results and Discussion 
In this section, we reported the results of the mixed data (FEM and experimental data). The 
execution of GAs disclosed the existence of two straightforward NN architectures. Specifically, 
for the flattening, the best network was a Wide Neural Network (WNN). In contrast, for the 
penetration, the best results were achieved by a Trilayered Neural Network (TNN), as reported in 
Table 2 and 3. In Fig. 1 and Fig. 2, we depicted the plot of the results.  

The WNN refers to an artificial neural network architecture that typically has fewer hidden 
layers but a substantial number of nodes in each layer, providing it with the capacity to capture a 
wide range of features and relationships within the data. In this context, the TNN is formed by one 
fully connected layer and a ReLU activation function. The TNN is a form of artificial neural 
network, also known as a single-layer perceptron. It consists of three layers: an input layer, which 
receives the initial data; a hidden layer, which processes the input data using weighted connections 
and activation functions; and an output layer, which produces the final results. The obtained TNN 
comprises three fully connected layers and a ReLU activation function. The selected NN models 
demonstrate enhanced penetration values on the validation set but decreased penetration 
performance on the test set. On the other hand, on the test set, WNN reached the best performance. 
Additional studies and model evaluation metrics are required to understand this behavior.  
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Table 2. Results for flattening on validation and test sets 

Model: WNN  RMSE R-Squared MSE MAE 

Validation set 2.48 0.75 6.16 1.67 

Test set 0.73 0.92 0.54 0.51 

 
Table 3. Results for penetration depth on validation and test sets 

Model: TNN  RMSE R-Squared MSE MAE 

Validation set 0.80 0.96 0.64 0.49 

Test set 2.57 0.60 6.64 1.46 

 
 

 
Fig. 1. Performance for the flattening prediction for mixed data 

 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 300-307  https://doi.org/10.21741/9781644903131-34 

 

 
305 

 
Fig. 2. Performance for the penetration prediction for mixed data 

In this scenario, DL can contribute to expediting finite element analyses, a process known for 
its resource-intensive computing requirements. Additionally, DL enables predictions for novel 
combinations of materials, eliminating the necessity for running extra simulations. This not only 
enhances computational efficiency but also broadens the scope of material analysis by providing 
insights into unexplored configurations, thus showcasing the versatility and potential of machine 
learning in the domain of FEM analyses. 
Comparison with our previous work 
Our previous work tested machine learning (ML) techniques on mixed data. The best models were 
NN for the penetration on the test set and LR for the flattening prediction, as reported in Table 4 
[9]. In this previous work, our results showed high performance for the penetration value and their 
decrease for flattening prediction, as confirmed in this research.  
 

Table 4. Results for flattening and penetration on  test set with ML techniques 

Models RMSE R-Squared MSE MAE 

LR  1.83 0.90 3.36 1.45 

NN 0.58 0.96 0.34 0.41 
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Table 5. Comparison of the models 

Output Models RMSE R-Squared MSE MAE 

 
Flattening 

LR  1.83 0.90 3.36 1.45 

WNN 0.73 0.92 0.54 0.51 

 
Penetration 

NN 0.58 0.96 0.34 0.41 

TNN 2.57 0.60 6.64 1.46 

 
In Table 5, we compared the results of the previous work and the approach presented in this 

study. WNN achieved a high performance for the flattening of the evaluation metrics. For the 
penetration, the TNN designed using GA shows worse performance. We graphically represented 
this comparison in Fig. 3. The best model for penetration prediction is NN. We highlighted the 
best results for flattening and penetration with the color view in Table 4. 
 

 
Fig. 3. Comparison of performance 

 
Conclusions 
This study applied DL techniques on a mixed dataset for CS to enhance the precision of predicting 
coating features, such as penetration and flattening, to optimize process efficiency. To design the 
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architecture of the models, GA is applied to construct the network. The best models are WNN for 
the prediction of the flattening and TNN for the prediction of the penetration depth. Specifically, 
WNN can outperform our previous AI models. The conducted experiments demonstrate that DL 
techniques have the potential to predict optimal parameter combinations, consequently amplifying 
the efficiency and effectiveness of the coating process. GA can help optimize the design model 
architectures to minimize the need for manual hyperparameter tuning. This process can be time-
consuming and less than optimal. Exploring multi-output regression networks can be considered a 
potential approach in future works. By employing multi-output regression networks, the model 
can directly predict multiple outputs simultaneously, potentially enhancing the overall 
performance and applicability of the system.  
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