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Abstract. In this study, multi-particle finite element simulations in powder compaction were 
performed to analyze the effects of the size of the representative volume element (RVE), the 
number of elements per particle, and particle size distribution. Simulation parameters were 
calibrated to accurately predict the relative density of compacts derived from two types of powders. 
The influence of RVE size across four mixtures was examined to obtain its relationship with 
relative density. The impacts of particle size distribution and element number per particle were 
studied. The results indicate a decline in relative density with increased element size. Moreover, a 
genetic algorithm is employed to determine the optimum mixture composition yielding the highest 
relative density at 1400 MPa.  
Introduction 
Powder compaction is a manufacturing process used to shape powdered materials into a desired 
form by applying pressure. This process is widely employed in industries such as powder 
metallurgy, pharmaceuticals, ceramics, and cosmetics, among others. The primary goal of powder 
compaction is to transform a loose powder into a solid, dense product with specific geometrical 
and mechanical properties.  

The final characteristics of tablets are primarily influenced by stresses on the powder during 
compaction. Factors affecting this stress can directly alter tablet outcomes. The study by Mazel et 
al. [1] examined the role of friction between tooling and powder on die-wall pressure during 
compaction, using both flat and concave punches. Tests were conducted on microcrystalline 
cellulose, complemented by finite element method (FEM) simulations. Both approaches showed 
that increased friction leads to a rise in die-wall pressure, a finding contrasting some existing 
literature. For flat punches, the stress changes were influenced mainly by die-powder friction. 
However, with concave punches, friction alterations between punches and powder also impacted 
die-wall pressure, which is relevant in scenarios where friction changes due to film deposits on 
punches. The densification of Cu–Al mixed metal powder in double-action die compaction was 
studied through numerical modeling by Wang et al. [2]. Comparisons were made between single-
action and double-action compaction, with the latter enhancing densification, aligning with the 
Van Der Zwan–Siskens equation. Different initial packing structures showed that denser setups 
resulted in better compacts. The compact density rose as Al content increased, but stress dropped. 
Conversely, with consistent Al content, increased compaction pressures raised both density and 
stress. The impact of friction on compaction was evident in its effect on powder flow and stress 
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distribution. Extended dwell times aided densification, while a larger height-to-diameter ratio 
impeded it. Compacting powders at high loads is challenging due to particle movement and 
breakage. While tableting is critical in pharmaceuticals, a deeper connection between large-scale 
powder behavior and micro-properties is sought. Using a compaction simulator, Cabiscol et al. [3] 
studied the behavior of limestone powders under different pressures. The compatibility of 
limestone was analyzed using the traditional Heckel model and the newer Wünsch model, with the 
latter showing enhanced adaptability. High-pressure results revealed that the role of large particle 
interlocking, evident at lower pressures, diminishes. Notably, tablet strength remained consistent 
for particles with a median size below 10 µm, but for larger particles, strength reduced as size 
increased. Binder jetting additive manufacturing (AM) offers a cost-effective way to create 
intricate metal parts, but achieving total density without notable sintering shrinkage is challenging. 
To address this, Bai et al. [4] studied bimodal powder mixtures in binder jetting copper. The results 
showed that compared to using uniform fine powders, bimodal mixtures increased packing density 
by 8.2% and sintered density by 4.0% while improving flowability by 10.5% and reducing 
sintering shrinkage by 6.4%. 

In this study, multi-particle finite element simulations in powder compaction were performed 
to analyze the effects of the size of the representative volume element (RVE), the number of 
elements per particle, and particle size distribution. Simulation parameters were calibrated to 
accurately predict the relative density of compacts derived from two types of powders. The 
influence of RVE size across four mixtures was examined to obtain its relationship with relative 
density. The impacts of particle size distribution and element number per particle were studied. 
The results indicate a decline in relative density with increased element size.  
Material Property 
In this study, the powder under investigation consists of Fe-Si-Al-P. The modeling approach 
involves implementing a parametric Python script to generate random particles and simulate the 
powder compaction process. The simulation is conducted using the dynamic explicit analysis, 
allowing for a comprehensive exploration of the compaction dynamics. Compression testing was 
executed using the Instron 8501 Servo Hydraulic Machine, which utilizes a servo-regulated 
hydraulic mechanism to exert compressive forces on specimens. Table 1 illustrates the material 
characteristics of this model. 
 

Table 1 Material properties. 

Parameter Value 
Elastic modulus [GPa] 170 
Poisson’s ratio 0.3 
ρ (kg/m3) 7,130  

    To accurately capture the material behavior during compaction, the stress-strain curve is fitted 
using a power law Swift hardening model, expressed as 𝜎𝜎=𝐾𝐾(𝜀𝜀+𝜀𝜀0)𝑚𝑚. The power law Swift 
parameters are set as follows: K (material constant) is assigned a value of 1380, m (strain hardening 
exponent) is determined to be 0.245, and ε₀ (initial strain) is specified as 0.0354. Fig. 1 illustrates 
the Stress-strain curve of the Fe-Si-Al-P alloy powder. 
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Fig. 1 Stress-strain curve of the Fe-Si-Al-P alloy powder 

Multi-Particle Finite Element Model 
In this approach, each particle is individually depicted as a solid component and is discretized 
using the four-node tetrahedral elements (C3D4). Providing a fine mesh is important for 
thoroughly analysing particle behavior during compaction. Meanwhile, the punch and die are other 
components represented as discrete 3D rigid bodies. 

Generating the RVE is a crucial step in ensuring the accuracy of the simulation. A customized 
MATLAB code [5,6], complemented by a Python script, was developed. The goal was to create a 
realistic representation of each particle fully encapsulated by the die. The initial relative density of 
the RVE is set at 40 percent. This parameter is essential for accurately reflecting the initial state of 
the powder and has implications for the subsequent compaction behavior. Furthermore, special 
attention is given to the composition of the RVE. It is essential that the RVE composition 
accurately mirrors the proportions of fine to coarse particles in the actual powder system. 
Achieving this accurate representation is crucial for capturing the diverse characteristics of the 
powder mixture and simulating the compaction process with a high degree of fidelity. Fig. 2 shows 
the generated particles and die. 

 

Fig. 2 3D MPFEM model implemented in Abaqus for [75,25] mixture 
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Results and Discussion 
Influence of element size on the relative density. In examining the influence of the number of 
elements per particle on the relative density within the context of powder compaction, a 3D linear 
tetrahedral element (C3D4) Finite Element (FE) model was employed. The powder system, 
characterized by a particle diameter of 125.5 μm, was simulated within an RVE measuring 
1200x1200x1200 μm³ and comprising 507 particles. A range of element sizes, determined by 
varying seed sizes, was investigated, leading to distinct elements per particle (Elem/Particle) ratios 
and corresponding edge lengths. Notably, as the Elem/Particle increased—from 26 for a seed size 
of 1000 μm to 2252 for a seed size of 15 μm—a discernible trend emerged: a consistent rise in 
relative density. This suggests that finer discretization, reflected in higher Elem/Particle ratios, 
plays a crucial role in enhancing the accuracy of the simulation, enabling a more precise 
representation of the powder compaction process. These findings underscore the importance of 
carefully selecting the element size to balance computational efficiency, and ensuring the accuracy 
of results in simulations of powder compaction is crucial. Fig. 3 depicts the influence of 
element/particle on the relative density. 

 

Fig. 3 The influence of elements/particles on the relative density. 
Effect of RVE Size on the Relative Density. The influence of the RVE size on the relative 

density was analyzed. RVE sizes of 240, 305, and 350 micrometers for the [50,50] mixture were 
considered. Fig. 4 illustrates the impact of RVE size on relative density for the [50,50] mixtures. 
Increasing the RVE size results in a corresponding increase in initial density. However, it is 
essential to note that while this variation becomes more significant at lower pressures, the 
difference decreases and becomes relatively insignificant in areas where higher pressures are 
applied.  

Effect of Particle Size Distribution on the Relative Density. To investigate the influence of 
particle size distribution on relative density, experimental tests with four distinct mixtures were 
conducted: [0,100], [25,75], [75,25], and [100,0], where the first number represents the percentage 
of fine particles and the second denotes the percentage of coarse particles. Fig. 5 demonstrates the 
relationship between pressure and relative density for various particle size distributions. As evident 
from Fig. 5, the relative density of pure particles—fine or coarse—is notably lower than the rest 
of the mixtures. Among the mixtures, the [0,100] composition exhibits the lowest relative density, 
surpassing even the [100,0] mixture. Notably, when comparing the [75,25] and [25,75] mixtures, 
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[75,25] stands out with the highest relative density, particularly at lower pressure levels. However, 
as pressure increases, the distinction in relative density between [75,25] and [25,75] diminishes, 
becoming relatively insignificant. This behavior is intricately tied to the plastic deformation of 
particles, with coarse particles experiencing less plastic deformation than fine particles. The result 
is greater elastic recovery, especially at lower pressures, contributing to the observed variations in 
relative density across different mixtures. 

 

Fig. 4 Effect of RVE size on the relative density for [50,50] 
Fig. 6 illustrates a relative density comparison between EXP and MPFEM at 1600 MPa. The 

results obtained from MPFEM closely align with the experimental findings, demonstrating a 
similar trend. This consistency in trends between the simulation and experimental data reinforces 
the reliability of the MPFEM results in capturing the relative density behavior during loading at 
1600 MPa. 

Finding the Optimum Mixture with the highest Relative Density Using a Genetic Algorithm. 
Genetic Algorithms (GAs), inspired by natural selection and genetics, offer a robust approach to 
solving complex optimization problems [7]. The GA procedure involves several key steps: 

1. Initial Population: 
• Generate a set of potential solutions represented by chromosomes, P={p1, p2,…,ps}, 

consisting of random real values. 
2. Evaluation (Fitness Calculation): 

• Define a fitness function, g(P), to assess the performance of each chromosome in 
the population based on the optimization objective. 

3. Selection: 
• Arrange chromosomes by their fitness values. 
• Select two parents for crossover and mutation based on their fitness. 
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4. Genetic Operators: 

• Create new chromosomes or offspring (C1 and C2), from the selected parents using 
genetic operators. 

5. Crossover: 
• Exchange information between two parents to generate new offspring. 

6. Mutation: 
• Introduce changes to the genes of the crossed offspring chromosomes. 

This iterative process continues until a convergence criterion is met or a specified number of 
generations is reached. The GA aims to explore the solution space efficiently, providing a robust 
methodology for determining the optimum mixture composition that yields the highest relative 
density at 1400 MPa.  

maximize   𝐹𝐹(𝑀𝑀) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 (𝑚𝑚1,𝑚𝑚2 )  
0 ≤ 𝑚𝑚1 ≤ 100  
0 ≤ 𝑚𝑚2 ≤ 100  
𝑚𝑚1 + 𝑚𝑚2 = 100 

where 𝑚𝑚1 and 𝑚𝑚2 represent the volume fractions of the two powders, F(M) is the maximum 
relative density as the objective function at 1400 MPa. Table 2 illustrates the optimum mixture 
with the highest relative density at 1400 MPa. 

 

Fig. 5 Relative density for various particle size distributions 
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Fig. 6 Relative density comparison within EXP and MPFEM at 1600 MPa 
Table 2 The optimum mixture with the highest relative density at 1400 MPa 

Mixture [Fine, Coarse] [66.74, 33.26] 
Relative Density 85.6107 

Conclusion 
This study explored the intricate details of powder compaction through advanced simulation 
techniques and optimization algorithms. The objective was to fine-tune simulation parameters to 
accurately predict the relative density of compacts derived from two types of powders. Key 
findings include the significant impact of element size, RVE size, and particle distribution on 
relative density. The delicate balance between these factors is crucial in accurately predicting the 
compaction process. Using a genetic algorithm to identify the optimum mixture composition for 
maximum relative density at 1400 MPa further demonstrates the potential for advanced 
optimization techniques in powder compaction studies. These insights contribute to the evolving 
understanding of powder compaction dynamics and offer valuable guidance for optimizing the 
process in various industrial applications. 
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