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Abstract. With additive manufacturing, innovative porous structures emerge for generating 
lightweight components with high mechanical responses. Body-centered cubic lattice structures 
are the focus of this study, with customizable lattice density depending on the strut diameter. To 
predict the properties of lattice structures and thus reduce the number of tests in experimental 
campaigns, several numerical and analytical models have been developed. In this work, the 
elastoplastic response was determined. Buckling phenomena of vertical struts depend on the 
different boundary conditions applied in Finite Element simulations. As shown the number of cells 
within the model affects the results. This size effect was quantified for different lattice density 
cases. The numerical results obtained for lattice structures with different relative density were also 
compared with the well-known Gibson-Ashby model. 
Introduction 
The development of additive manufacturing technologies and their fabrication capacities has 
enabled the production of parts with complex three dimensional geometries. These capabilities 
allow producing parts with innovative designs [1], optimized functionalities [2] and lightweight 
structures [3] while reducing production cost. Indeed, this process decreases material consumption, 
production time and post-processing. The lattice structures belong to the complex components 
built by additive manufacturing.  

Lattice structures are based on a cellular representative unit, which is repeated in an orderly 
fashion in a three-dimensional space. The basic cells – generally called struts-based cells – are 
defined by constituent rods, with particular geometric dimensions and connectivity at certain 
points in space called nodes, thus defining their topology. From a cellular point of view, lattice 
structures can be considered indeed as local structures [4], but from a more macroscopic point of 
view, they can be considered as a homogenized meta-material distributed in a three-dimensional 
space with its own mechanical properties [5]. 

One of the main features of lattice structures is that their global mechanical response can be 
altered by modifying their topology or geometry parameters such as relative density, cell topology, 
cell size, among other design parameters. Depending on its design, the lattice structure leads to 
mechanical properties that significantly differ from those of the constituent material [6]. 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 224-233  https://doi.org/10.21741/9781644903131-25 

 

 
225 

Cellular structures have been used in several applications, such as aerospace [7], automotive 
[8], marine [9] and medical [10] industries, owing to the lightweight nature, high strength-to-
weight ratio, potential for customization and specific energy absorption capacity [11, 12].  

On the basis of the mechanical response, lattice structures can be categorized into bending-
dominated or stretch-dominated. Bending-dominated lattice structures experience mostly internal 
bending moments and are therefore compliant, while stretch-dominated lattice structures 
experience mainly internal axial loads and are therefore stiffer than bending-dominated structures. 
In general, the cell topology is the main factor that defines the deformation mechanism of the 
lattice structure [13]. 

The most studied strut-based lattice structure topologies are those based on body-centered cubic 
(BCC), face-centered cubic (FCC) geometries and their variants with reinforcing struts, with the 
most common one being z reinforcement in the direction of the load (BCCZ and FCCZ). The 
behavior of these strut-based cells can be characterized by the connectivity of the struts defined in 
Eq. 1 with the Maxwell number [5, 14], (𝑀𝑀). This 𝑀𝑀-value depends on the number of struts (𝑠𝑠) of 
the representative cell, and the number of nodes, (𝑛𝑛). 

 
𝑀𝑀 = 𝑠𝑠 − 3𝑛𝑛 + 6 (1) 

For 𝑀𝑀 < 0, the system is bending-dominated, while for 𝑀𝑀 ≥ 0 the structure will display a 
stretch-dominated behavior. This number is just a general indicator, as the boundary between the 
two types of behavior is not so clear. It also depends on the orientation of struts versus the load 
direction.  

To decrease the experimental campaigns, many computational models, based on the finite 
element method, have been developed with the goal of predicting the mechanical behavior of 
lattice structures, especially those related with the energy absorption capacity of such structures. 
For instance, Rodrigo et al. [15] presented the quasi-static and dynamic compression behavior of 
functionally graded lattices by means of experiments and simulations using finite element 
modeling. The successful validation of their model allowed parametric simulations of the structure 
subjected to higher compression rates. Wang et al. [13] also investigated the mechanical response 
and deformation mechanism of a hierarchical lattice structure by means of quasi-static 
compression tests and numerical simulations. They also found out a good correlation between both 
methods and proved a superior performance of strut-reinforced hierarchical lattice structures 
compared to conventional ones. Favre et al. [6] used a continuous crystallographic approach to 
generate cubic strut-based lattice cells with different topologies and evaluated them through finite 
element modeling. They found a relationship between the relative elastic modulus and relative 
density equivalent to the Gibson-Ashby model, with a constant 𝐶𝐶 = 1 and an exponent 𝑛𝑛 
dependent on the cell topology and geometry. 

Computational models have proven to be reliable tools to predict the mechanical behavior of 
lattice structures, validating analytical models such as the Gibson-Ashby model [16]. However, 
there is a lack of models evaluating the effect of different boundary conditions in simulations 
compared with real physical experiments. The present article assesses the impact of the size effect, 
in terms of number of cells in the studied volume, on the global elastoplastic response of a body 
centered cubic lattice. The simulations are performed with various boundary conditions and 
relative densities. They demonstrate the great importance of taking into account the edge effect in 
lattice structures. Indeed different numbers of cells generate different mechanical responses. The 
insights and findings reported in this work must be considered when modeling lattice structures as 
a homogenized material in small domains.  
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Materials and Methods 
Strut-based lattice structure 
The investigated body-centered cubic lattice cells with strut reinforcements on the x, y and z axes 
(BCCXYZ lattice) at different relative densities are shown in Fig. 1. Four BCCXYZ cells with 
different relative densities of 20%, 40%, 60% and 80% were modeled by adapting the diameter of 
the representative strut. The cell size 𝐿𝐿 was set constant at a value of 3 mm. The parameters for 
defining the topology of the cells shown in Fig.1 are the relative density (𝜌𝜌𝑟𝑟), the strut diameter 
(𝑑𝑑) and the cell size (𝐿𝐿). 

 
Fig. 1 Lattice cell designs at different relative densities 𝝆𝝆𝒓𝒓 and their geometric parameters: strut 

diameter 𝒅𝒅 and cell size 𝑳𝑳. 

Finite element modeling 
Finite element models of the four lattice structures shown in Fig. 1 were designed with their 
different relative density using ANSYS mechanical. To reveal the different mechanical responses 
of these structures under different boundary conditions, four models (see Fig. 2) were 
implemented: 

• Model 1 is made up of a single cell without any displacement constraints applied to the 
lateral faces. In the bottom face, the degree of freedom in the Y direction (direction 
perpendicular to the face) is constrained, allowing lateral displacements within this face. A 
reference line in the center of the cell was defined having only its degree of freedom of 
displacement in the Y direction free. It aims to prevent any side slip or rigid movement of 
the whole sample. A constant displacement of 0.3 mm was applied to all the nodes in the 
upper face of the cell to apply an overall compression strain up to 10%. 

• Model 2 is made up of a single cell with three symmetry planes in faces which are 
respectively perpendicular to each of the three x, y and z coordinate axes. By this way, a 
structure of eight cells is represented. A constant displacement of 0.6 mm was applied to 
all the nodes in the upper face of the cell.  

• Model 3 is made up of a single cell with three symmetry planes perpendicular to each of 
the three x, y and z coordinate axes. Additionally, on the two remaining lateral faces, the 
constraint that all the nodes of these faces should remain in the same plane is applied. In 
other words, these lateral faces are allowed to move as long as they stay flat, preventing 
buckling or any similar effect. A constant displacement of 0.6 mm was applied to all the 
nodes in the upper face of the cell. 

• Model 4 is made up of 8 cells with three symmetry planes in faces perpendicular to each 
of the three x, y and z coordinate axes. In this way, a structure of 64 cells is represented. A 
constant displacement of 1.2 mm was applied to all the nodes in the upper face of the 
model.  

For all the simulations, an overall compression strain up to 10% was applied. 
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The struts of the lattice structures were meshed using solid elements SOLID187 of size between 
0.13 and 0.2 mm. The material properties were set based on the 316L stainless steel. A bilinear 
elastic-plastic model was chosen considering the 316L strain-hardening after the yield point. The 
elastic modulus was set to 150 GPa, the yield stress to 225 MPa and the hardening modulus to 0.95 
GPa. Poisson’s ratio was established as 0.3. 

 
Fig. 2 Graphical representation of the four models with different boundary conditions applied on 

a 20% relative density lattice cell. 
Methodology to assess lattice mechanical properties 
The mechanical properties of lattice structures have a slightly different interpretation with respect 
to the standard definitions of solid materials. For example, elastic modulus, yield strength and 
tangent modulus, when determined for lattice structures, refer to the apparent macroscopic 
properties that converge to certain values when the number of unit cells is sufficiently large [17]. 

Usually the mechanical properties of lattice structures are expressed as a fraction of the 
corresponding mechanical property of the solid material. This ratio depends on the relative density 
of the cellular unit. Density fraction (𝜌𝜌 𝜌𝜌0⁄ ) is defined as the ratio between the density of the lattice 
structure (𝜌𝜌) and the density of the bulk material from which it is built (𝜌𝜌0) [17]. In general, and 
regardless of their topology, the mechanical properties of lattice structures tend to increase with 
an increment in their relative density. Another factor that plays a relevant role regarding the 
mechanical response of anisotropic lattice structures is the orientation of the cells with respect to 
the loading direction. 

Most mechanical characterizations of lattice structures are performed through compression 
tests, due to their simple performance in contrast with tensile tests. The problem in the tensile case 
is linked to the design of a specimen that avoids stress concentration [18]. The compressive 
deformation mechanism of lattice structures can be divided into three stages: a linear elastic 
deformation, followed by plastic deformation and ending in densification or compaction (Fig. 3) 
[19]. Within the compression test, the individual struts of the lattice structures are prone to failure 
by 3 mechanisms: yielding, buckling and fracture [5]. 

During the elastic deformation stage, the stress-strain response of the cellular material is linear 
elastic, with an elastic modulus proportional to the elastic modulus of the parent material. Once 
the elastic limit is reached, plastic deformation takes place and yielding or buckling begins in the 
cells of the lattice structure. Often plastic deformation continues with an almost constant stress, 
known as plateau stress [5]. Additionally, at this stage, it is possible to experience an oscillating 
stress behavior, due to the consecutive failure of the different cell layers of the lattice structure. 
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This effect is further enhanced due to the inherent fabrication defects of additive manufacturing. 
Once the deformations of the cells are high enough to present contact between the different layers 
of the lattice material, the densification or compaction stage is reached. At this stage, the stress 
necessary to increase the deformation abruptly grows and the cellular material adopts a behavior 
closer to that of the solid material (see Fig. 3).  

From the macroscopic point of view of cellular material, three main modes of compressive 
failure have been found: i) successive collapse of cells, in which each layer collapses due to 
buckling or crushing, and compresses on the layer below, making the structure stronger after the 
compaction of each layer; ii) brittle fracture in the cell walls, usually originated by the existence 
of some defects and characterized by the propagation of the crack or cracks through the lattice 
struts; and iii) diagonal shear, resulting in an initial loss of about 50% of strength followed by a 
stiffening during densification [20]. 

 
Fig. 3 Stress-strain compression curves characteristic of bending-dominated and stretch-

dominated lattice structures. Modified from [19] 
The Gibson-Ashby model is one of the most widely accepted models for computing the 

mechanical properties of cellular structures including strut-based lattice structures. This model 
predicts mechanical properties, such as elastic modulus and yield strength, expressed as fractions 
of the base material properties. These properties depend on the type of mechanical response of the 
lattice structure, whether bending-dominant or stretch-dominant. They are expressed as a positive 
power relation with the relative density of the lattice structure. The formulation for the elastic 
modulus and yield strength for lattice structures is shown in Eq. 2 and Eq. 3, respectively [16]: 

 
𝐸𝐸
𝐸𝐸0

= 𝐶𝐶 � 𝜌𝜌
𝜌𝜌0
�
𝑛𝑛

 (2) 
 

𝜎𝜎
𝜎𝜎0

= 𝐶𝐶 � 𝜌𝜌
𝜌𝜌0
�
𝑛𝑛

 (3) 
 

where 𝐸𝐸 and 𝜎𝜎 are the apparent elastic modulus and yield strength of the lattice structure, 𝐸𝐸0 and 
𝜎𝜎0 are the elastic modulus and yield strength of the bulk parent material. Following this way, the 
fractions (𝐸𝐸 𝐸𝐸0⁄ ) and (𝜎𝜎 𝜎𝜎0⁄ ) can be defined as the relative modulus and the relative strength of 
the lattice structure, with 𝐶𝐶 being the Gibson-Ashby constant. Its value depends on the cell 
topology and geometry and should be derived from experimental results. The exponent 𝑛𝑛 depends 
on the mechanical response of the lattice structure, bending or stretch-dominated. It has different 
values depending on cell geometry size and materials. However, this exponent value is also usually 
derived from experimental results. 

In this work, the presented model with different relative densities, numbers of cells and 
boundary conditions were simulated up to a global strain of 10%. The global stress-strain curves 
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were calculated and used to derive the Gibson-Ashby exponent 𝑛𝑛, assuming a constant 𝐶𝐶 value of 
1. The procedure was applied on the modulus of elasticity, the tangent modulus and the yield stress 
(defined for 0.2% of plastic strain). 
Results 
Figure 4 shows the global true stress-strain curves of simulated BCCXYZ lattice structure with 5 
different relative densities and the boundary condition expressed in model 2, thus representing an 
8 cell lattice structure. 

 
Fig. 4 True stress-strain curves of simulated compression specimens of different relative 

densities for model 2 boundary conditions. 
Similar curves were obtained for the other boundary models (models 1, 3, 4). The elastic 

modulus, the yield stress and the tangent modulus of each case were obtained. These results are 
summarized in Table 1. 

The main observations are that the principal differences between the models are found in the 
plastic zone. Indeed, the tangent modulus presents the largest deviations for different boundary 
conditions, especially for the low densities. Contrarily, the elastic modulus and the yield stress do 
not show important variations for the different models (5% or less). In general, the model with the 
lowest mechanical properties is model 1, which was expected since this model represents a single 
cell, so its bars are more prone to bending or buckling. This model, representative of a single cell 
has poor real applications, its interest is to provide a lower limit of the mechanical properties in 
lattice structures. Model 2 better simulates mechanical properties of lattice structures due to its 8-
cell arrangement. However, it prevents by symmetry conditions some buckling that can happen in 
model 4. This latter model represents an array of 64 cells, and its lateral vertical bars can 
experience high deformations due to buckling. Model 3, the most constraint, is the stiffest, having 
the highest mechanical properties. This model represents an 8-cell lattice structure but in the ideal 
case in which its lateral faces will always remain flat, in spite of the values of the displacements. 
Model 3 aims to simulate a lattice structure portion that is inside a larger array, gaining resistance 
from contact with the surrounding cells or bulk material. Despite being an ideal case whose 
application in experiments is unlikely, it serves to establish an upper limit in terms of mechanical 
properties of lattice structures subjected to compression. It is expected that when simulating lattice 
structures with a larger number of cells, but with the boundary conditions of models 2 or 4, their 
behavior will tend to approach that of model 3 as the number of cells in the structure increases and 
the bending or buckling of the vertical external edge face becomes less relevant for the whole 
structure. This difference in mechanical properties due to changes in boundary conditions is 
exacerbated in structures with lower relative density, since they imply smaller diameter in the 
struts. This slenderness tends to increase the buckling in these struts, resulting in lower mechanical 
properties and even a softening effect once the plastic zone is reached. These effects are shown in 
Fig. 5, which shows the true stress-strain curves for the lattice structure at 20% and 40% of density 
fraction for the different boundary condition cases analyzed. 
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Table 1 Mechanical properties of simulated lattice structures at different relative densities and 
different boundary conditions. The maximum absolute difference (∆) between the results for 

each relative density is computed, its percentage relative to the smallest result of the simulations 
of this case is also provided. 

Relative density Boundary condition Elastic modulus (GPa) Yield stress (MPa) Tangent modulus (GPa) 

20% 

Model 1 6.433 ∆= 0.113
= 1.76% 

12.6 ∆= 0.4
= 3.17% 

-0.026 ∆= 0.057
= 219.23% Model 2 6.487 12.8 -0.008 

Model 3 6.546 13.0 0.031 
Model 4 6.526 13.0 0.010 

40% 

Model 1 18.562 ∆= 0.243
= 1.31% 

33.2 ∆= 1.5
= 4,52% 

0.078 ∆= 0.033
= 42.31% Model 2 18.675 33.9 0.103 

Model 3 18.789 34.7 0.111 
Model 4 18.805 34.5 0.109 

60% 

Model 1 41.706 ∆= 0.659
= 1.58% 

69.6 ∆= 4.2
= 6.03% 

0.227 ∆= 0.012
= 5.29% Model 2 42.015 71.7 0.233 

Model 3 42.309 73.8 0.239 
Model 4 42.365 73.3 0.239 

80% 

Model 1 85.604 ∆= 1.063
= 1.24% 

132.6 ∆= 1.6
= 1.21% 

0.504 ∆= 0.012
= 2.38% Model 2 86.065 133.9 0.509 

Model 3 86.553 135.1 0.516 
Model 4 86.667 134.2 0.516 

100% (Bulk material) 14.940  226.7  0.927  
 

 
Fig. 5 True stress-strain curves of simulated compression specimens at (a) 20% and (b) 40% for 

different boundary condition models. 
As it can be observed Fig. 5a, in the extreme case of structures with low densities (20%), a large 

difference in the mechanical properties is observed, especially in the tangent modulus, presenting 
a softening effect in the plastic zone for models 1 and 2 due to the buckling in the vertical bars at 
the edge of the structure. This behavior implies that to have a better mechanical response, an 
arrangement with a larger amount of cells should be considered. In Fig. 5, the results of model 4 
(64 cells) and particularly of model 3 present ideal cases without buckling. These findings show 
the importance of the size effect on lattice structure, especially in the ones with low densities or 
small strut diameters. For the 40% relative density structure, no softening is observed, but there is 
still a considerable difference in the tangent modulus between the different models (up to 30%). 
Figure 6 shows the predicted deformed cells of model 1 at different densities, in which the buckling 
effect of the exterior vertical struts can be observed. 

A Gibson-Ashby fit was performed for each model, varying the relative density. The adjustment 
curves are shown in Fig. 7, where it is observed that the Gibson-Ashby power function with C=1 
predicts with good precision the three relative mechanical properties as a function of the relative 
density. The Gibson-Ashby curves for the Young modulus and yield stress almost overlap each 
other, reaffirming that these properties do not present significant changes when the number of cells 
in the structure (expressed as the boundary condition model) changes. The only boundary model 
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impact is observed in the tangent modulus, where a variation in the number of cells of the structure 
leads to an important change in this property and therefore in the associated curve. 

 
Fig. 6 Deformed simulated lattice structure with maps of von Mises equivalent stress for model 1 

boundary conditions at (a) 20%, (b) 40%, (c) 60% and (d) 80% relative density for a macro 
strain of 10%. 

 
Fig. 7 Gibson-Ashby curves for different boundary condition models relating (a) relative elastic 

modulus, (b) yield stress and (c) tangent modulus. Symbols correspond to simulation results, 
dashed lines are the fitted Gibson-Ashby curves. 

Conclusions 
During this research, numerical simulations of body-centered cubic lattice cells with several 
densities and different boundary conditions were performed to determine the elastoplastic edge 
effect response. From the analysis of the results, the following main statements are derived: 

• Size effect, represented by different boundary conditions, significantly affects the plastic 
response of the lattice structure. This effect is most remarkable for the tangent modulus, 
particularly in structures with low relative density and therefore small strut diameter. Their 
slenderness tends to cause strut buckling. Size effect induces reduced mechanical 
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properties in structures with a low number of cells, where this buckling tends to play a 
relevant role in the general behavior of the structure. 

• The Gibson-Ashby model predicts both the elastic modulus and the yield stress with good 
precision and low size effect. To predict the plastic zone properties, such as the tangent 
modulus, size effect must be taken into account, since considerable change in the exponent 
of the Gibson-Ashby formula is observed for the different boundary condition models. 

Ongoing research will focus on correlating these numerical results with experiments to validate 
the adopted methodology. In addition, for impact and energy absorption applications, the 
evaluation of the behavior of structures with different numbers of cells and at stages of larger 
deformation or densification should be considered. 
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