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Abstract. A methodology to map the heterogeneous elastoplastic mechanical properties of welded 
joints is presented. The approach and results of the proposed methodology are demonstrated using 
numerical data representing an off-axis butt-weld. This work extends the Virtual Fields Method 
(VFM) by introducing automated spatial parameterisation of the constitutive parameters. This 
extension enables the novel characterisation of welds with more complex geometries, loading 
conditions and dissimilar materials.  
Introduction 
Inverse identification methods have been previously developed to take advantage of the rich data 
provided through full-field measurements. The VFM is one such method which uses full-field 
strain measurements to determine constitutive parameters, and benefits from computational 
efficiency compared to other methods as no resolution of the direct problem is required [1,2]. The 
VFM has previously been used to determine the constitutive parameters of welded joints with 
simple butt-joint geometry, however existing work requires a priori spatial parameterisation of 
constitutive parameters [3,4]. Automated spatial parameterisation removes the necessity of a priori 
knowledge, hence enabling more complex tests to be performed. 
Theory and key concepts 
The Virtual Fields Method. Based on the principle of virtual work (PVW), the virtual fields method 
(VFM) seeks to identify constitutive parameters that satisfy the weak form of the stress equilibrium 
equation for a given strain field. Stress fields can be reconstructed from measured strain fields 
using a postulated constitutive model and an initial guess of the constitutive parameters for each. 
The static admissibility of these stress fields can then be checked using the PVW. The constitutive 
parameter map is iterated until global equilibrium is satisfied, at which point the parameter map is 
said to be identified.  

Eq. 1 shows the simplified equation for the PVW assuming quasi-static loading of a specimen 
with negligible body forces. This equation expresses the local stress equilibrium equation in the 
weak form with the force boundary conditions accounted for. It states that the internal virtual work 
(IVW) and the external virtual work (EVW) must balance. σ𝑖𝑖𝑖𝑖 is the internal stress within the 
volume, 𝑉𝑉. 𝑇𝑇𝑖𝑖 is the traction vector acting on the boundary surface, 𝑆𝑆.  

 
−∫ σ𝑖𝑖𝑖𝑖ϵ𝑖𝑖𝑖𝑖∗  𝑑𝑑𝑉𝑉𝑉𝑉���������

IVW

+ ∫ 𝑇𝑇𝑖𝑖𝑢𝑢𝑖𝑖∗ 𝑑𝑑𝑆𝑆𝑆𝑆𝑓𝑓�������
EVW

= 0   (1) 
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The term 𝑢𝑢𝑖𝑖∗ is a test function, known as the virtual displacement. This term does not require 
physical interpretation and merely acts as a spatial weighting function over the body. The spatial 
derivatives of the virtual displacement are known as the virtual strains, ϵ𝑖𝑖𝑖𝑖∗ . The virtual strains are 
unrelated to the physical strains and again only act as spatial weighting functions.  

Ensuring constant virtual displacements at the boundaries of any unknown traction distributions 
allows the term 𝑢𝑢𝑖𝑖∗ to be factored outside the integral. The tractions in the EVW term can then be 
simplified to only require the resultant force – a value provided by the load cell of the test machine. 

In this work, the stress is assumed constant throughout the thickness and the strain data provided 
using digital image correlation (DIC) will take the form of discrete data points. The full-field data 
should have sufficient spatial resolution to approximate the surface integral as a discrete sum using 
the mid-point rule. Hence, the PVW can be further simplified to produce Eq. 2, where Fi is the 
applied force vector measured by the load cell and sp is the surface area associated with each strain 
data point. From this equation, a cost function can be formed as the squared difference between 
external and internal virtual work, and minimized for the sought parameters.   

 
−∑ �σ𝑖𝑖𝑖𝑖

𝑝𝑝 ϵ𝑖𝑖𝑖𝑖
∗𝑝𝑝𝑠𝑠𝑝𝑝�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝=1 + 𝑢𝑢𝑖𝑖∗𝐹𝐹𝑖𝑖 = 0   (2)  
 
Sensitivity based virtual fields (SBVFs, [5]). They are automatically generated virtual fields 

which adapt their spatial weighting according to each parameter’s stress sensitivity in order to 
enhance parameter identifiability. 

The equilibrium gap indicator (EGI, [6,7]). A particular formulation of virtual fields can be 
used to identify local discrepancies or ‘equilibrium gaps’ in the stress fields. Assuming 
kinematically admissible strain fields and correctly defined thicknesses, these equilibrium gaps 
(local regions of inadmissible stress states) arise due to incorrect constitutive model or parameters. 
As such, the EGI can be used as a metric to assess spatial regions in which equilibrium is not 
satisfied. Previously, this formulation has been used to detect damage and to assess heterogeneity 
in specimens of smoothly varying stiffness. In this work the EGI is used both to identify the 
location of discrepancies in the parameter map and their relative magnitude. To do this, an 
inspection window is rastered across the stress field with virtual fields defined to negate any 
external work contribution from outside of the window boundary. The EGI only assesses stress 
equilibrium within each window, hence it evaluates if the spatial distribution of stress satisfies 
static admissibility. However, it is ignorant of the magnitude of applied force and hence stress 
levels (i.e. all datapoints in the stress field may be wrong by some factor but the EGI will not detect 
any issue providing the distribution is correct). 

The force reconstruction error (FRE). Like the EGI, the FRE is another virtual field formulation 
which checks for the equilibrium of any cross-section with the applied load.  

Eq. 3 shows how the reconstructed force for a given slice, 𝐹𝐹𝑟𝑟𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠, can be computed from the 
average longitudinal stresses of that slice, σ𝑖𝑖𝑖𝑖, and its cross-sectional area, 𝐴𝐴𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠. Here, index i 
denotes the longitudinal direction of the specimen, in which the resultant load Fa is measured. The 
FRE value is expressed as in Eq. 4.  
 
𝐹𝐹𝑟𝑟𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = ∫ σ𝑖𝑖𝑖𝑖

𝑝𝑝𝑑𝑑𝐴𝐴 = ℎ ∫ σ𝑖𝑖𝑖𝑖
𝑝𝑝𝑑𝑑𝑑𝑑 = 𝐴𝐴𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 ∗ σ𝚤𝚤𝚤𝚤����𝐿𝐿  𝐴𝐴   (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝑎𝑎 −  𝐹𝐹𝑟𝑟𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠    (4) 

 
Spatial parameterisation. In order to reconstruct the stress fields from the measured strain fields, 

we need to assign a value for each constitutive parameter at every point in our dataset. However, 
this spatial map of parameters is unknown and to be identified, so a parameterisation scheme is 
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required to reduce the number of unknowns to an acceptable level. The parameterisation scheme 
will reconstruct a spatial map of values for each constitutive parameter from a number of variables 
(less than the number of datapoints). To date, this problem has been tackled by manually 
discretising the specimen into subregions a priori and then assuming each subregion is 
homogeneous (e.g. [3,4]). However, a priori information about the spatial distribution of 
properties is not always known, and automating spatial parameterisation would enable novel 
characterisation of specimens with more complex geometries and loading conditions. 

A mesh is perhaps the most intuitive parameterisation approach. Each datapoint is assigned a 
value depending on its position within the element it lies in. Degrees of freedom define the nodal 
values and shape functions are used to specify the distribution of values throughout the element. 
The mesh can be refined by changing the number of elements or by changing the order of the shape 
functions. However, meshed methods inherently required a rigid structure and the number of 
unknowns increases rapidly with refinement.  

Meshless approaches can provide greater flexibility, and radial basis functions (RBFs) are used 
in this work due to their flexibility and relatively low degree of freedom count. A radial function 
is a univariate function which returns a value dependent only on the distance from the kernel origin 
to the point being evaluated. Multiple basis functions are combined, using the principle of 
superposition, to approximate the desired interpolated solution. This is the method used here. 
Method 
The key concepts outlined above can be combined in such a way to extend the VFM to include the 
automated spatial parameterisation of the constitutive parameters. This process is outlined in 
Fig. 1. The dashed box encloses the core VFM which, as previously described, identifies a map of 
constitutive parameters that best satisfies global equilibrium for a particular spatial 
parameterisation scheme. The EGI and FRE metrics can then be used to assess and update the 
parameterisation scheme. The particulars of how this is done could be modified, however the 
pseudo-code below outlines the approach used in this work. The core methodology will be 
presented through a worked example, in which synthetic data is used to mimic that obtained 
experimentally.  
 
ALGORITHM 1: PSEUDO-CODE FOR HETEROGENEOUS IDENTIFICATION METHODOLOGY 
1 prepare test data 
2 prepare homogeneous baseline data 
3 perform initial identification with mesh parameterisation and SBVF 
4 initialise RBF parameterisation using initial identified results 
5 perform identification with RBF parameterisation and local equilibrium metric VFs 
6 while optimisation not converged do  
7  update RBF parameterisation and proceed with identification   
8 end while 
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Figure 1 – The virtual fields method with automated spatial parameterisation. 

Worked example 
Test data generation. A notched, off-axis, butt-weld geometry is selected for the worked example 
(see Fig. 2). The weld region and heat affected zones have a width of 5.2 mm and 1.7 mm 
respectively. The off-axis angle is 60 degrees from the specimen longitudinal axis, and two offset 
notches penetrate the specimen 2 mm on either side. A linear hardening model is used together 
with Von Mises yield surface. Throughout the identification the elastic properties are assumed 
known, with a Young’s modulus of 190 GPa and Poisson’s ratio of 0.28. The yield stress will be 
identified as a heterogeneous parameter, and has a value of 360 MPa in the base metal and 420 
MPa in the weld metal, with a linear variation throughout the heat affected zone. The hardening 
modulus, which will be identified as homogeneous, is assigned a value of 3700 MPa. Finite 
Element was used to simulate the test above, and synthetic image deformation [8] was used to 
realistically simulate DIC measurements. In this example, grey level noise is added directly to the 
images, leading to a longitudinal strain noise floor of 140 microstrain.   

Initial identification. In order to get an initial indication of the heterogeneous parameter maps, 
a coarse, zero-order mesh is used, for which all points in an element share a single value. Hence, 
for the yield stress, the number of unknowns is equal to the number of elements. Initial mesh size 
is a user-choice, and here is set to be two elements in the vertical direction and six elements in the 
horizontal direction, giving a total of twelve unknowns governing the yield stress parameter map. 
The hardening modulus is assigned a single degree of freedom, giving thirteen unknowns in total. 
An initial guess of 350 MPa and 3000 MPa is assigned to the yield stress and hardening modulus 
respectively. The initial identification is performed using SBVFs and a gradient-descent optimizer. 
This results in a hardening modulus of 3296 MPa and a yield stress map as shown in the top row 
of Fig. 3. 
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Figure 2 –Notched, off-axis butt-weld geometry. Dimensions in mm. 

 
Initialise meshless parameterisation. The initial identification results can now be used to 

initialize the RBFs by fitting the RBFs to the identified parameter map (minimising the root mean 
squared error). The process of initially identifying using a coarse mesh and then fitting RBFs is 
not necessary, however, it quickly provides an approximate parameter map from which to start the 
global optimisation with RBFs. 

Identification using RBF, EGI and FRE. Using the fitted RBF map as a starting point, 
identification is performed using a global optimiser to minimise a cost function composed of the 
normalised EGI and FRE terms. The EGI returns a 2D spatial array of values for each timestep. In 
this work, the root mean square of all spatial-temporal values is normalised by the baseline EGI 
obtained from a homogeneous case. The FRE returns a 1D spatial array, which can be extrapolated 
to a 2D array for each load step. Once again, the root mean square of all spatial-temporal values is 
normalised by the baseline FRE value. In this work, the pattern search algorithm is used, however, 
other optimisers such as genetic algorithms have also been used successfully. 

Updating parameterisation and checking convergence. If there is no improvement after an 
iteration, a second attempt is made with the same number of kernels but a different starting point. 
If a second attempt has already been tried, the identification is ended. If there is an improvement 
in the cost function and the EGI and FRE metrics are below the baseline threshold, then the 
identification is ended, as no further improvement is feasible. Alternatively, if there is an 
improvement in the cost function, and the baseline threshold has not yet been reached, the 
parameterisation scheme is updated. To update the parameterisation, a new kernel is added to any 
heterogeneous parameters. This new kernel is positioned using the EGI and FRE, which highlight 
regions with the largest inconsistences in the stress field.  
Results and discussion 
The results are reported in Fig. 3 below. They clearly show how the process is able to automatically 
converge towards the solution without any a priori information on the distribution of the 
properties. This is a great strength of the technique compared to previously published work where 
such a complex distribution would not have been possible to identify without any a priori 
parameterisation, as in [3]. The method seems robust to realistic camera noise, and computational 
times are reasonable, about 4 hours on an Intel® Core™ i7-9700 CPU at 3 GHz with 32 Gb of 
RAM, with an unoptimized and unparallelised Matlab code. 
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Figure 3 - Results. 

Conclusion and future work 
The present results are first steps towards an operational tool. Improvements can include the use 
of bivariate RBFs (with different ‘lengths’ in two orthogonal directions) instead of univariate ones. 
There is a question about the possibility to also identify a hardening modulus map but considering 
the low sensitivity of hardening, this is an open question. Finally, experimental validation is 
currently being performed on a butt weld with notches and then, on a T-joint. 
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