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Abstract. The inherent multiscale (MS) complexity of lattice materials necessitates specialized 
modeling techniques to predict their mechanical behavior accurately and efficiently. A 
combination of the multiscale finite element method (e.g. FE²), with a Data-Driven paradigm, 
leads to Multi Scale Data-Driven (MSDD) modeling procedure to simulate the behavior of these 
materials. On top of the inherent complexity of these materials, limitations of the Laser Powder 
Bed Fusion (LPBF) manufacturing process result in geometrical imperfections of the 
manufactured materials giving rise to so called as-manufactured configuration. Furthermore, 
theses imperfections have significant influence on the mechanical behavior and introduce biases 
and variance from expected behavior based on the modeling with initially designed lattice material, 
so called as-designed configuration. The proposed research is the first step in the reduction of the 
cost of MSDD approach by aligning the model's accuracy with the manufacturing capabilities. The 
aim is to exploit the inherent variance in as-manufactured lattice material and to minimizing the 
material database to the essential material state points. To that end, in this work, using X-ray 
tomography, we create digital twins of various as-manufactured aluminum lattice unit cells and 
perform a number of simulations. The goal is to get further understanding of the variance in 
mechanical behavior resulting from geometrical variations and defects. These results will be 
further used to enhance the efficiency of the MSDD approach with no compromise on predictive 
capabilities. 
Introduction 
Lattice materials. The rapid development of additive manufacturing in particular Laser Powder 
Bed Fusion (LPBF), enabled the design at the material scale in order to create, so called, lattice 
materials. These materials are a subset of cellular materials [1] and exhibit a high stiffness-over-
mass ratio, making them particularly attractive for aerospace applications [2]. Lattice samples 
shown in this work were manufactured with Selective Laser Melting (SLM) [3] process on the 
machine SLM®125. 

Manufacturing process depends on several parameters, namely laser displacement velocity, 
laser power, laser spot size, the powder constitutive material or its grain size. There is obviously a 
number of influential factors, some of them are random and their interaction and effects are still 
not completely understood. This further leads to differences between the as-designed and as-
manufactured configurations in terms of relative volume and shape. 

In [4], the authors enlighten different types of defects (Fig. 1): local cross-section variations of 
struts, waviness, porosity and even notches. In their work, the authors study the influence of these 
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defects on the mechanical behavior of lattice material samples. They classify the defects and 
introduce a statistical distribution in a beam-based finite element model. 

On the contrary, in this work we avoid the defects classification and we focus on creating the 
three-dimensional (3D) finite element (FE) models. These models are built from the 3D images 
obtained from the X-ray tomography of the real manufactured lattice samples. 

 
Multiscale methods for lattice materials. Lattice materials represent complex cellular structures 
composed of repeating unit cells. If we add on top of this rather complex structure the details of 
the as-manufactured configuration (geometry variations described above), prohibitive 
computational costs render the direct numerical simulation virtually impossible. This type of 
problems where two distinguished length scales exist – local unit cells at the mesoscopic scale and 
global structure at the macroscopic scale – are often modeled using MS approach, e.g. FE² [5]. 
This method solves the macroscopic boundary value problem of the global structure and the local 
problem of the unit cell considered as a Representative Volume Element (RVE), as illustrated in 
Fig. 2. 

Contrary to classical FE methods, the macroscopic problem is not driven by a material constitutive 
law, but by the homogenized results of mesoscopic scales problems of the RVE. Typically, the 
effective material behavior at the macroscopic scale is obtained by homogenizing the stress field 
of the RVE loaded with a given strain state, for each integration point on the macroscale. Although 
this kind of procedure can be parallelized due to independent mesoscopic problems, one needs to 
run a generally non-linear simulation for each integration points and each load increment of the 
macroscopic problems. Moreover, linear perturbation evaluations on the RVE are needed to obtain 
the tangent operator for the macroscopic problem. To reduce the number of simulations on RVE 
it is possible to reuse the previously calculated solutions using model reduction techniques or 
machine learning [6]. In the following work we will use an alternative approach based on Data-
Driven simulations. 
 

Fig. 1: Scanning Electron Microscope images of rhombicuboctahedron (A) and 
regular octet (B) lattices enlightening manufacturing defects [4]. 

Fig. 2: Multiscale mechanical problem illustration 

Macroscopic scale Mesoscopic scale 
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Data-Driven Computational Mechanics. In 2015, Kirchdoerfer and Ortiz [7] introduced a 
formulation of the boundary value problem where the material constitutive law model is replaced 
by data. In this context one still needs to verify the kinematic compatibility condition (Eq. 1) and 
the static equilibrium condition (Eq. 2). 

ε = 1/2 (∇q + (∇q)T ) (1) 

div(σ)+ fV = 0 (2) 

where q, ε, σ, fv are displacements field, strain field, stress field and external forces, respectively. 
However, the material behavior is now encoded as a cloud of points given as couples of strain and 
stress tensors (ε, σ). The space where the data points are defined is called the phase space and is 
usually noted Z, it has 12 dimensions (6 for the strain components and 6 for the stress components, 
both in Voigt notation). Solution to the boundary value problem is obtained by minimizing a 
distance d in Z, between the admissible mechanical states from the set called C – which verify Eq. 
1 and Eq. 2 – and the states from the material database called D. To that end, we use an energy 
norm, that is, the squared distance between two points of the phase space (εc, σc) ∈ C and (εd, σd) 
∈ D is given by 

d² = 1/2 ((εc − εd) : ℂ : (εc − εd)) + 1/2 ((σc − σd) : ℂ −1 : (σc − σd)) (3) 

where ℂ is a purely numerical Hooke-like operator. 
 

In this work we turn to the combination of FE² MS strategy with the Data-Driven paradigm [8], 
leading to MSDD method. The goal is to substitute the systematic online simulations on the RVE 
by the nearest neighbor search in terms of the distance defined in Eq. 3 and within the previously 
created material database. This makes the MSDD approach a good candidate to reduce the costs 
of the FE² method. We note that the material database is in the MSDD context usually created 
before in the offline phase, however it is still possible to add new data points in the material 
database by simulation of the RVE if necessary [9]. The principle obstacle within MSDD solver 
is the nearest neighbor search step which can be expensive if the database is large. Some of the 
standard efficient searching methods are readily available to accelerate this step, such as tree 
searching (kd-trees, k-means trees, etc.), see also some other techniques proposed in [10]. 

In our work we would like to explore the possibility of taking into account the variance inherent 
to the manufacturing process in order to reduce the size of the material database and avoid 
expensive and over-sampled material databases. More precisely, the overall goal is to propose a 
method to use the knowledge of the manufacturing uncertainties to filter an over-sampled database 
while keeping the same predictive capabilities at the macroscopic scale. In this work the first step 
considers exploiting X-ray tomography images and creation of digital twins of various as-
manufactured aluminum lattice unit cells. With the accurate 3D description in hands, we tend to 
perform a number of RVE simulations with as-manufactured configuration to get further 
understanding of the variance in mechanical behavior resulting from geometrical variations and 
defects. These results will be used in our further work to enhance the efficiency of the MSDD 
approach. 
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Methods 
Manufacturing and 3D imagery. For this work, lattice sample (Fig. 3b) was manufactured with 
Selective Laser Melting (SLM) process on the machine SLM®125 and using an aluminum alloy 
powder AlSi7Mg0,6 according to the norm DIN EN 1706 / EN AC-42200. A unit cell in this 
sample is CFCC type, hybrid cell composed of the Face Centered Cubic and Center cross-like 
reinforcement (Fig. 3a). The as-designed unit cells have a side length of 4.069 mm and a relative 
volume of 16.81% (Fig. 3a). The use of X-ray tomography and 3D imagery with 18µm voxel size 
enabled to reconstruct the surfaces of the as-manufactured unit cells (Fig. 3c). 

 
Creation of RVEs from digital twins. Digital twins are numerical models based on real 
structures. Firstly, the unit cells are extracted from the whole sample 3D image and treated 
separately. As can be seen from Fig. 3c reconstructed surfaces of the manufactured unit cell with 
18µm voxel size are rough and too rich for intended FE modeling. To be able to create a 3D finite 
element mesh, it was necessary to apply a filter on the images to artificially smoothen the surfaces. 
This filtering must be as low as possible to minimize the modification of the extracted cell’s 
geometry. After the images are smoothed, a marching cubes algorithm was used to reconstruct the 
outer surfaces. Then another meshing algorithm is used to fill the volume with tetrahedrons. The 
process of digital twin generation is illustrated in Fig. 4. 

 

(a): As-designed CFCC unit 
cell. 

(b): Lattice sample 
manufactured by SLM. 

(c): Reconstructed surfaces of a unit 
cell of the manufactured sample.  

Fig. 3: Sample and unit cells illustrations. 

Fig. 4: Digital twin RVE creation process illustration. 
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In this work, six different cells were extracted from the same lattice sample. Using the previously 
described process, digital twins of our RVE are created, three of them are shown in Fig. 5. In 
addition, one as-designed RVE has been created for comparison purpose. The relative volumes of 
the RVEs are shown in Table 1. The RVEs FE models were created using DS Abaqus software 
using linear tetrahedral elements (C3D4). Each RVE is composed of approximately 1.6 * 105 

elements. The material behavior for the RVE simulation was modeled using standard elastic-
plastic law for aluminum with isotropic hardening. 

 
Table 1: RVEs relative volumes. 

RVE Relative volume (%) 
As-designed 16.58 
As-manufactured #1 19.39 
As-manufactured #2 19.46 
As-manufactured #3 19.25 
As-manufactured #4 19.56 
As-manufactured #5 19.54 
As-manufactured #6 18.12 
As-manufactured mean 19.22 

 
In this work the finite element method is used for the simulation the RVE problem. We note 
however that other methods exist, such as, Fast Fourier Transform, see [11]. These methods can 
be based directly on images without the necessity of building a mesh making them particularly 
efficient to model RVEs with large voids. Exploring this alternative is out of scope of this work 
but will be explored in future study. 

 
Computational Homogenization. Localization of the macroscopic strain state on the RVE is 
performed by applying boundary conditions on its external surfaces ΓD. The displacements field 
qΓ of the nodes belonging to a face of the RVE’s enveloping cube is constrained and driven to 
ensure a mean value of the RVE strain ε. In the literature, three different types of boundary 
conditions (ensuring Hill-Mandel energy condition and allowing to impose an average deformation 
are used, namely, i) kinematic uniform, ii) uniform traction and iii) periodic boundary conditions. 

The kinematic uniform boundary conditions are easy to implement and are used in this work. 
Here the displacements of the boundary nodes are driven by their position (Eq. 4). To that end, the 
displacements of the boundary nodes are driven by ε and by their position XΓ as 

qΓ = ε·XΓ (4) 

 

Fig. 5: Three different as-manufactured RVEs from the same lattice sample. 
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In order to describe the effective response of our RVEs and use it in MSDD approach we need to 
perform so-called meso-to-macro transition (Fig. 2). In our context, this simply boils down to the 
stress homogenization, that is, the macroscopic stress state σ becomes the volume average of the 
stress field σm [12] over the RVE volume (Eq. 5). 

σ = ⟨σm⟩     with     ⟨•⟩ = 1
𝑉𝑉𝑚𝑚

∫ • 𝑑𝑑𝑣𝑣Ω𝑚𝑚  (5) 

For each strain state ε applied to the RVE, homogenized stresses are computed at 20 equally spaced 
increments. We note here that the input strain state ε is defined in 6-dimensional strain space. In 
order to limit the number of evaluation points exploring at the same time the strain space as much 
as possible, careful design of experiments is needed [13]. Thus, we exploit here the hypercube 
sampling and we choose to sample the strain space in three dimensions associated to the principal 
components of the strain tensor εI, εII, εIII.  

 
The proposed sampling for this first attempt is made of 13 423 points of the strain space. 
 
Results 
As this work is still in progress, the performed simulations created a database that is currently 
composed of 5517 points related to 7 different RVEs: 6 related to as-manufactured and 1 to as-
designed configuration. We recall that each of the material points is defined in 12-dimensional 
phase space Z with couples of strain and stress tensors (ε, σ). The evaluations and homogenization 
procedures are performed sequentially on a laptop Intel® Core™ i7-10510U CPU @ 1.80GHz with 
32Gb memory. Projections on two of the 12 dimensions of Z enlighten the differences in 
mechanical response between the RVEs. Points resulting from unidimensional loading cases (only 
one component of the loading strain is non-zero) are presented in Fig. 7. 
 
 
 
 
 

Use rotation angles to 
transform principal 
strains into the 6D 

Cartesian coordinate 
system.  

 Generate a full 
factorial DOE for 

principal strain 
components εI, εII, εIII 

within specified 
ranges. 

Filter the generated 
DOE to retain only 
those triplets where  

εI ≥ εII ≥ εIII  

Prepare a set of 
rotation angle triplets 

(α, β, γ). 

Fig. 6: Overview of used procedure to sample the 6D strain space. 
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As can be clearly seen from the presented examples, different geometries of the RVEs lead to 

variation in homogenized mechanical responses. The first noticeable difference is between the as-
designed configuration (blue points in Fig. 7) and the average of the as-manufactured 
configurations. This systematic bias is associated both with the manufacturing process and the 
creation of the digital twins. Not surprisingly, different cells within the same lattice sample exhibit 
different defects, and therefore, do not demonstrate the same behavior. Consequently, for the as-
manufactured RVEs, there is a random variability in the homogenized stress states. In Fig. 7, error 
bar type of plot is used for the graphical representation of the variability of the data. We note in 
passing that observed variability increases with the magnitude of the loading as shown in Fig. 7. 
Discussion 
The systematic bias in the stress response can be partly explained by the difference in relative 
volume. As presented in Table 1, the average relative volume of the as-manufactured 
configurations is increased by 15.9% compared to that of the as-designed configuration. 

As a correlation between relative volume and mechanical response is expected, in forthcoming 
work, we will delve deeper into its influence and the origin of its deviation from the as-designed 
value. However, this difference can come either from a systematic bias related to the 
manufacturing process or from the digital twin creation procedure. The relative volume of the 
digital twins is influenced by the parameters of their creation process namely the cell extraction, 
filtering, surface reconstruction and meshing. One of the examples of significant parameter is the 
threshold of the marching cubes algorithm used to reconstruct the outer surfaces which impacts 
the relative density and the overall homogenized response. As mentioned previously, our 
perspective is to profit from the variability of responses from the as-manufactured configurations 
and to propose a database ‘filtering’ method. This method will consider the fact that variability is 
not identical in all loading directions and for different amplitudes of the loading. 

 
 

Fig. 7: Extract of data created by simulations on the 7 RVEs, showing the projected stress 
and strain values on the dimension of the phase space that corresponds to the loaded strain 
component. The results for the as-manufactured configuration are displayed with error bars 
showing the variability (the mean value and the standard deviation) of generated data from 

different RVE realizations. 
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