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Abstract. The crystal plasticity finite element method (CP-FEM) readily enables microstructure-
based material modelling by relating macroscopic plastic deformation to dislocation slip on crystal 
slip systems. Rate-independent CP models provide physically accurate solutions by allowing slip 
only if the resolved shear stress on a slip system equals the critical resolved shear stress. However, 
computing the amount of slip for such models remains challenging. This work proposes a novel 
stable and efficient stress-update algorithm based on fixed-point iterations. These iterations trace 
the hypersurfaces that describe the slip state for which individual slip system’s yield functions are 
zero, until all slip system hypersurfaces intersect. This simultaneously provides the set of active 
slip systems and the slip on these systems, avoiding the need for an iterative active set search 
algorithm without inducing spurious slip on systems on which the shear stress is below the critical 
resolved shear stress.   
Introduction 
The crystal plasticity finite element method (CP-FEM) is a powerful tool for incorporating 
microstructural effects into predictions of macroscopic mechanical behaviour of polycrystalline 
materials. CP-FEM models plastic deformation as the result of the combined slip activity on the 
material’s crystallographic slip systems, requiring the amount of slip to be computed given the 
applied loading. 

For deformations at low temperature, rate-independent CP models provide physically accurate 
solutions by allowing slip only if the resolved shear stress (RSS) on a slip system equals the critical 
resolved shear stress (CRSS) [1]. Active and inactive slip systems must then be distinguished, but 
the selection of the active set is nontrivial as it is not uniquely defined at start of an increment [2]. 
Therefore, stress update algorithms for rate-independent CP-FEM may start with a guess for the 
active set and compute the slip on the systems in that set, after which the active set is updated and 
slip computations are restarted if the resulting stress state requires slip systems to be (de)activated 
[3]. Such iterative search procedures clearly limit the computational efficiency of rate-independent 
CP models. As such, various authors introduced more sophisticated algorithms to initialize the 
active set [4-6]. 

The complexity of determining an active set led to the development of multiple CP formulations 
that do not require an active set at all. One approach is to relate the resolved and critical resolved 
shear stresses of all systems in a single yield function that defines a yield surface with rounded 
corners [7]. It is, however, difficult to incorporate effects of slip system interactions, e.g. latent 
hardening, in such a model [8]. 

A popular method that also does not require an active set, but does easily allow to include slip 
system interactions, is to employ viscoplastic regularisation and relate the slip activity of a slip 
system to the ratio between its RSS and CRSS [9]. This, however, renders the model rate-
dependent and results in small amounts of slip on systems on which the RSS does not exceed the 
CRSS. An increase in plastic deformation may then cause extra hardening. Choosing model 



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 2144-2153  https://doi.org/10.21741/9781644903131-236 

 

 
2145 

parameters that result in a lower strain-rate sensitivity reduces the spurious slips, but also results 
in an ill-conditioned system of equations [10]. 

Recently proposed stress update algorithms based on the interior point method also avoid the 
active set search by rendering all slip systems active [11, 12]. These algorithms result in a truly 
rate-independent response, but alike viscoplastic models, induce slip even if the RSS on a system 
is below its CRSS. 

This work aims at developing a novel stress-update algorithm for rate-independent CP models 
that does not require an active set search procedure and does not induce spurious slip on systems 
on which the RSS is lower than the CRSS. We first formulate the rate-independent crystal plasticity 
model, after which we propose a stress-update algorithm based on fixed-point iterations. Then, we 
demonstrate the feasibility of this algorithm and compare its stability with that of a conventional 
Newton-Raphson based stress update algorithm for rate-independent CP. 
Formulation of the crystal plasticity model 
We take as the starting point for the formulation of the CP model the multiplicative decomposition 
of the deformation gradient tensor 𝐅𝐅 into an elastic (𝐅𝐅e) and a plastic part �𝐅𝐅p� as 

𝐅𝐅 = 𝐅𝐅𝐞𝐞 ⋅ 𝐅𝐅p . (1) 

Here, 𝐅𝐅p defines an intermediate configuration that results from plastic slip caused by dislocation 
motion and in which the crystal lattice is undistorted. 𝐅𝐅e accounts for the rotation and elastic stretch 
of the lattice and relates this intermediate configuration to the current configuration. In the 
following, an overset hat ( )̂ is used to denote symbols that are mapped from the intermediate to 
the current configuration. The total velocity gradient 𝐋𝐋 = �̇�𝐅 ⋅ 𝐅𝐅−1 can now be additively 
decomposed into its elastic (�̂�𝐋e) and plastic ��̂�𝐋p� components as 

𝐋𝐋 =  �̂�𝐋𝐞𝐞 + �̂�𝐋p, (2) 

while the plastic deformation gradient is given by a summation of the plastic slip rates on the 
crystal’s 𝑛𝑛s slip systems as 

�̂�𝐋p = ∑ �̇�𝛄(𝛼𝛼)𝑛𝑛s
𝛼𝛼=1 𝐬𝐬�(𝛼𝛼) ⊗𝐦𝐦� (𝛼𝛼). (3) 

Here, �̇�𝛄(𝛼𝛼) is the plastic slip rate on a slip system 𝛼𝛼 that is defined by the unit slip direction vector 
𝐬𝐬�(𝛼𝛼) and unit slip plane normal vector 𝐦𝐦� (𝛼𝛼). In this work, we consider a face centred cubic (FCC) 
lattice. 

In a rate-independent CP model, slip on a system 𝛼𝛼 is allowed only if the resolved shear stress 
𝜏𝜏r

(𝛼𝛼) on that system equals the critical resolved shear stress 𝜏𝜏f
(𝛼𝛼). The resolved shear stress 𝜏𝜏r

(𝛼𝛼) is 
calculated by projecting the stress 𝛔𝛔 as 

𝜏𝜏r
(𝛼𝛼) = 𝛔𝛔:𝐏𝐏�(𝛼𝛼) = 𝛔𝛔: 1

2
�𝐬𝐬�(𝛼𝛼) ⊗𝐦𝐦� (𝛼𝛼) + 𝐦𝐦� (𝛼𝛼) ⊗ 𝐬𝐬�(𝛼𝛼)�, (4) 

where 𝐏𝐏�(𝛼𝛼) denotes the symmetric Schmid tensor. We compute the critical resolved shear stress 
𝜏𝜏f

(𝛼𝛼) using a Taylor type hardening law as 

𝜏𝜏f
(𝛼𝛼) = 𝜏𝜏0 + 𝐺𝐺𝐺𝐺�∑ 𝑄𝑄(𝛼𝛼𝛼𝛼)𝜌𝜌(𝛼𝛼)𝑛𝑛s

𝛼𝛼=1 . (5) 
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Here, 𝜏𝜏0 represents a constant lattice friction, 𝐺𝐺 is the shear modulus and 𝐺𝐺 is the length of the 
Burgers vector. The component 𝑄𝑄(𝛼𝛼𝛼𝛼) of the interaction matrix 𝐐𝐐 determines the hardening of slip 
system 𝛼𝛼 as a result of an increase in dislocation density 𝜌𝜌(𝛼𝛼) on slip system 𝛽𝛽. The components 
of 𝐐𝐐 are governed by six independent types of slip system interactions [13],  as listed in Table 1, 
for which the coefficients are taken from results of dislocation dynamics analysis conducted by 
Kubin et al. [13]. The relation between the dislocation density and the accumulated plastic slip 
𝛾𝛾(𝛼𝛼) = ∫ ��̇�𝛾(𝛼𝛼)�𝑡𝑡end

𝑡𝑡0
𝑑𝑑𝑑𝑑 on a slip system 𝛼𝛼 is modelled with the phenomenological constitutive 

model given by Becker [14]: 

𝜌𝜌(𝛼𝛼) = 𝜌𝜌∞ �1 − �1 − 𝜌𝜌0
𝜌𝜌∞ 
� exp(− 𝛾𝛾𝛼𝛼

𝛾𝛾∞
)�. (6) 

Here, 𝜌𝜌0, 𝜌𝜌∞ and 𝛾𝛾∞ are the initial dislocation density, saturation dislocation density and saturation 
slip, respectively. The values for the constants in Eqs. 5 and 6 are provided in Table 2. 

Table 1: Coefficients for slip system interactions in an FCC lattice [13] 

Self Coplanar Collinear Orthogonal Glissile Sessile 
0.122 0.122 0.625 0.070 0.137 0.122 

Table 2: Model parameters used in Eqs. 5 and  6 [12] 

𝐸𝐸 [GPa] 𝜈𝜈 [-] 𝜏𝜏0 [MPa] 𝐺𝐺 [mm] 𝜌𝜌0 [mm-2] 𝜌𝜌∞  [mm-2] 𝛾𝛾∞ [-] 
72.0 0.3 18.0 2.86×10-7 107 109 0.4 

 

Fixed-point iteration scheme for slip computations 
Now, we will formulate a stress update algorithm that provides the increments of stress and  plastic 
slip on the crystal’s slip systems during a time increment from 𝑑𝑑𝑛𝑛 to 𝑑𝑑𝑛𝑛+1 = 𝑑𝑑𝑛𝑛 + Δ𝑑𝑑 as function of 
the total rate of deformation tensor 𝐃𝐃 (the symmetric part of  𝐋𝐋, Eq. 2). A trial stress state is given 
as 

𝛔𝛔𝑛𝑛+1∗ = 𝛔𝛔𝑛𝑛 + ℂ�e:Δ𝐃𝐃.  (7) 

Here, ℂ�e denotes the elasticity tensor of the lattice in the current configuration. If for at least one 
slip system the RSS resulting from the trial stress state exceeds the CRSS, the closest point 
projection (CPP) from the trial state onto the yield surface is computed. The nonlinear systems of 
equations that defines this projection can be derived using the principle of maximum dissipation. 
For a detailed treatment of this derivation, the reader is referred to [12]. It follows that for all active 
slip systems, which define the active set 𝐴𝐴, it has to hold that 

𝐑𝐑σ    = ℂ�e:Δ𝐃𝐃 − Δ𝛔𝛔 − ℂ�e:∑ 𝐏𝐏�(𝛼𝛼)Δ𝛾𝛾(𝛼𝛼) 
𝛼𝛼∈𝐴𝐴 = 𝟎𝟎,  (8) 

𝜙𝜙(𝛼𝛼) = 𝜏𝜏r
(𝛼𝛼) − 𝜏𝜏f

(𝛼𝛼) = 0        ∀𝛼𝛼 ∈ 𝐴𝐴,  (9) 

while for all systems that are not in the active set it has to hold that 

𝜙𝜙(𝛼𝛼) = 𝜏𝜏r
(𝛼𝛼) − 𝜏𝜏f

(𝛼𝛼) < 0        ∀𝛼𝛼 ∈ 𝑁𝑁.  (10) 

Here, 𝑁𝑁 = 𝑇𝑇 ∖ 𝐴𝐴 denotes the set of inactive systems, with 𝑇𝑇 being the set of all 𝑛𝑛s slip systems. In 
Eq. 8, it is used that Δ𝛾𝛾(𝛼𝛼) = �̇�𝛾(𝛼𝛼)Δt and Δ𝐃𝐃 = 𝐃𝐃Δt. 
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A common approach to solve the system given by Eqs. 8 and 9 is to linearise these equations 
and iteratively update the increments of plastic slip on the active systems and the stress using the 
Newton-Raphson (NR) algorithm [2, 3, 10]. This, clearly, requires the active set 𝐴𝐴 to be 
established. If the conditions in Eqs. 9 and 10 cannot be satisfied for a given active set, it has to be 
updated and the NR iterations have to be restarted. 

To avoid having to explicitly initialise and update the active set during a time increment, we 
propose to combine Eqs. 9 and 10 into a single condition that has to hold for each slip system: 

𝜙𝜙� (𝛼𝛼) = 𝜏𝜏r
(𝛼𝛼) − �̃�𝜏f

(𝛼𝛼) = 0        ∀𝛼𝛼 ∈ 𝑇𝑇,  (11) 

for which a modified flow stress is defined as 

�̃�𝜏f
(𝛼𝛼) = �

𝜏𝜏r
(𝛼𝛼) if 𝛾𝛾(𝛼𝛼) = 0 ∧ �𝜏𝜏R

(𝛼𝛼)(Δ𝐃𝐃,Δ𝛄𝛄)� < 𝜏𝜏f
(𝛼𝛼)(𝛄𝛄𝑛𝑛,Δ𝛄𝛄) 

sign�𝛾𝛾(𝛼𝛼)� 𝜏𝜏f
(𝛼𝛼)(𝛄𝛄𝑛𝑛,Δ𝛄𝛄) otherwise

 . (12) 

The condition in Eq. 11 can be rewritten in Mandel notation [15] as 

𝜙𝜙� (𝛼𝛼)(Δ𝐃𝐃,𝛄𝛄𝑛𝑛,Δ𝛄𝛄) = 𝐏𝐏�(𝛼𝛼)T𝛔𝛔𝑛𝑛+1∗ (Δ𝐃𝐃) − 𝐏𝐏�(𝛼𝛼)Tℂ�e𝐏𝐏�Δ𝛄𝛄 − �̃�𝜏f
(𝛼𝛼)(𝛄𝛄𝑛𝑛,Δ𝛄𝛄) = 0        ∀𝛼𝛼 ∈ 𝑇𝑇, (13) 

using Eqs. 4 and 8 and noting that 𝛔𝛔𝑛𝑛+1 = 𝛔𝛔𝑛𝑛 + Δ𝛔𝛔.  In Eq. 13 and the remainder of the text, all 
underlined symbols denote matrix and vector representations of tensors in Mandel notation. 
Column 𝛼𝛼 of the matrix 𝐏𝐏� corresponds to the Mandel vector 𝐏𝐏�(𝛼𝛼) of the symmetric Schmid tensor 
𝐏𝐏�(𝛼𝛼) [12]. The vector 𝛄𝛄𝑛𝑛 contains the accumulated slips of all slip systems. 

The solution Δ𝛄𝛄� to Eq. 13 is located at an intersection of the 𝑛𝑛s hypersurfaces 𝜙𝜙� (𝛼𝛼)(Δ𝛄𝛄) = 0. 
Each of these hypersurfaces defines where Δ𝛄𝛄 is such that the linear function 

𝑟𝑟(𝛼𝛼)(Δ𝛄𝛄) = 𝐏𝐏�(𝛼𝛼)Tℂ�e𝐏𝐏�Δ𝛄𝛄  (14) 

crosses the nonlinear function 

𝑔𝑔(𝛼𝛼)(Δ𝐃𝐃,𝛄𝛄𝑛𝑛,Δ𝛄𝛄) = 𝐏𝐏�(𝛼𝛼)T𝛔𝛔𝑛𝑛+1∗ (Δ𝐃𝐃) − �̃�𝜏f
(𝛼𝛼)(𝛄𝛄𝑛𝑛,Δ𝛄𝛄). (15) 

Due to the nature of the functions in Eqs. 14 and 15 and the definition of �̃�𝜏f
(𝛼𝛼) in Eq. 12, this 

crossing always occurs at �Δ𝛾𝛾(𝛼𝛼)� > 0 if �𝜏𝜏r
(𝛼𝛼)� = �̃�𝜏f

(𝛼𝛼), and at 𝛾𝛾(𝛼𝛼) = 0 if �𝜏𝜏r
(𝛼𝛼)� < �̃�𝜏f

(𝛼𝛼). Figures 1a 
and 1b show this schematically for an exemplary single crystal with two slip systems that is 
subjected to a tensile stress of 300 MPa. The two slip systems are oriented at an angle of -15° and 
60° with respect to the tensile axis, respectively. The CRSS on both systems evolves as given by 
Eqs. 5 and 6. For this example only, 𝑄𝑄(𝛼𝛼𝛼𝛼) = 1.4 − 0.4𝛿𝛿𝛼𝛼𝛼𝛼, where 𝛿𝛿𝛼𝛼𝛼𝛼 is the Kronecker delta 
function. As seen in Figure 1c, an intersection of the hypersurfaces 𝜙𝜙� (𝛼𝛼) = 0 defines both the 
active set and the slip activity on the (active) slip systems.  

 
 
 
 

: 𝑟𝑟(1)   
 (Eq. 14) 
: 𝑔𝑔(1)           (Eq. 15) 

: 𝜙𝜙� 
(1)

= 0  (Eq. 13) 

 
 
 

: 𝑟𝑟(2)   
 (Eq. 14) 
: 𝑔𝑔(2)           (Eq. 15) 

: 𝜙𝜙� 
(2)

= 0  (Eq. 13) 

 /   
 
 

: 𝜙𝜙� 
(1)

= 0 /  𝜙𝜙� 
(2)

= 0 
: 𝛥𝛥𝜸𝜸𝑘𝑘  without line search 
: 𝛥𝛥𝜸𝜸𝑘𝑘  with line search 
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(a) System 1 

 

 
(b) System 2 

 

 
(c) Convergence of the FPI 

scheme towards 𝜙𝜙� 
(1)

= 𝜙𝜙� 
(2)

= 0. 
Figure 1: Visualisation of (a)-(b) the hypersurfaces 𝜙𝜙� (𝛼𝛼) = 0 for the model shown top right and 

(c) the use of these hypersurfaces to determine the active set and slip activity. 

Based on this observation, we developed a novel fixed-point iteration (FPI) scheme that traces 
the hypersurfaces of the individual systems until it finds the fixed-point at which all 𝑛𝑛s 
hypersurfaces intersect. Table 3 shows the pseudocode for the proposed FPI scheme. Figure 1c 
shows the progress of the fixed-point iterations to compute the slip on the two slip systems for the 
exemplary single crystal introduced above.  

Given an estimate Δ𝛄𝛄𝑘𝑘 for Δ𝛄𝛄�, the FPI scheme performs two main steps. In the first step, 𝑛𝑛s 
one-dimensional root-finding problems are solved. Each solution provides the step length 𝑑𝑑(𝛼𝛼) for 
which the point Δ𝛄𝛄𝑘𝑘+1

(α) = Δ𝛄𝛄𝑘𝑘 + t(α)𝐝𝐝(α) is located on the hypersurface 𝜙𝜙� (𝛼𝛼) = 0. The search 
direction vector 𝐝𝐝(α) is chosen as the normalised 𝛼𝛼-th column of the symmetric matrix 𝐏𝐏�Tℂ�e𝐏𝐏�. 
The results Δ𝛄𝛄𝑘𝑘+1

(α)  are combined to compute the direction ΔΔ𝛄𝛄𝑘𝑘+1 along which the slip increment 
will be updated by setting ΔΔγ𝑘𝑘+1

(𝛼𝛼) = t(α)d(αα). Here, d(αα) is the 𝛼𝛼-th component of the search 
direction vector 𝐝𝐝(α). 

In the second step, a line search along ΔΔ𝛄𝛄𝑘𝑘+1 is performed and Δ𝛄𝛄𝑘𝑘 is updated as Δ𝛄𝛄𝑘𝑘+1 =
Δ𝛄𝛄𝑘𝑘 + 𝑞𝑞ΔΔ𝛄𝛄𝑘𝑘+1. The step length 𝑞𝑞 > 0 is chosen such as to minimise the L2-norm of the residual 
functions 𝜙𝜙� (𝛼𝛼)(Δ𝛄𝛄𝑘𝑘 + 𝑞𝑞ΔΔ𝛄𝛄𝑘𝑘+1) of all currently active slip systems. The positive influence of this 
line search step on the convergence behaviour of the FPI scheme can be clearly observed in Figure 
1c. When the line search step is enabled, the number of iterations to compute the slip activity of 
the exemplary single crystal reduces from 17 to only 2. 

The one-dimensional root-finding and the scalar minimisation problem are solved by the 
general and standard algorithms given by Brent [16]. These algorithms require only function 
evaluations and simple bracketing operations and are therefore easily implemented and 
numerically cheap to evaluate. 

The crystal lattice rotates during deformation. This requires to update 𝐏𝐏�(α) and ℂ�e during 
iterations. These updates are implemented as described in [12]. Allowing the lattice to rotate during 
iterations causes the fixed-point to move during the iterations. The influence thereof on the 
convergence of the FPI scheme will be analysed in the result section below. 
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After convergence of the FPI scheme, Eqs. 8 and 9 hold for all active slip systems. As such, the 
stress increment can be computed using Eq. 8 as 

Δ𝛔𝛔 = ℂ�eΔ𝐃𝐃 − ℂ�e𝐏𝐏�Δ𝛄𝛄, (16) 

and the consistent algorithmic tangent ℂep can be derived as [12] 

ℂep = �ℂ�e−1 + 𝐏𝐏�𝐆𝐆−𝟏𝟏𝐏𝐏�T�
−𝟏𝟏

. (17) 

Here, 𝐺𝐺(𝛼𝛼𝛼𝛼) = 𝜕𝜕𝜙𝜙(𝛼𝛼)/𝜕𝜕𝛾𝛾(𝛼𝛼). 

Table 3: Fixed-point iteration based stress update algorithm for rate-independent CP 
 1. Initialisation: 
1 𝑘𝑘  ← 0   
2 Δ𝛄𝛄𝑘𝑘  ← 𝟎𝟎 
3 Compute lattice rotation, update ℂ�

e
 and Schmid tensors 𝐏𝐏�(𝛼𝛼)

 

4 Set search directions: 𝐝𝐝(α) ← normalised 𝛼𝛼-th column of 𝐏𝐏�Tℂ�
e
𝐏𝐏� 

5 𝛔𝛔
𝑛𝑛+1
∗   ← 𝛔𝛔𝑛𝑛 + ℂ�eΔ𝐃𝐃 

6 𝑟𝑟0  = min �1.0 ,�∑ ��𝐏𝐏�(𝛼𝛼)T𝛔𝛔𝑛𝑛+1∗ � − 𝜏𝜏f
(𝛼𝛼)�

2
𝛼𝛼∈𝐴𝐴𝑘𝑘 �,   𝐴𝐴𝑘𝑘 = �𝛼𝛼 ∈ 𝑇𝑇 ∶  �𝜏𝜏r

(𝛼𝛼)� > 𝜏𝜏f
(𝛼𝛼) �  

7 𝑟𝑟  ← 𝑟𝑟0   
 2. FPI-iterations: 
8 do while 𝑟𝑟 > 10−4 
9  𝑘𝑘 ← k + 1 
10  for 𝛼𝛼 = 1, 2, … ,𝑛𝑛s do 
11   find 𝑑𝑑(𝛼𝛼):  solve 𝜙𝜙� 

(𝛼𝛼)�𝛄𝛄𝑛𝑛, Δ𝛄𝛄𝑘𝑘−1 + t(α)𝐝𝐝(α)� = 0 
12   ΔΔγ𝑘𝑘

(𝛼𝛼) ← t(α)d(αα) 
13  for 𝛼𝛼 = 1, 2, … ,𝑛𝑛s do 
14  if Δγ𝑘𝑘−1

(𝛼𝛼) + ΔΔγ𝑘𝑘
(𝛼𝛼) = 0:  

15   Δγ𝑘𝑘−1𝛼𝛼   ← 0 
16    ΔΔγ𝑘𝑘

(𝛼𝛼) ← 0 

17 
find 𝑞𝑞: minimize �∑ 𝜙𝜙� 

(𝛼𝛼)�𝛄𝛄𝑛𝑛, Δ𝛄𝛄𝑘𝑘−1 + 𝑞𝑞ΔΔ𝛄𝛄𝑘𝑘�
2

𝛼𝛼∈𝐴𝐴𝑘𝑘 , 𝐴𝐴𝑘𝑘 = �𝛼𝛼 ∈ 𝑇𝑇: �𝜏𝜏r
(𝛼𝛼)� > 𝜏𝜏f

(𝛼𝛼) ∨ �Δ𝛄𝛄𝑘𝑘−1 + 𝑞𝑞ΔΔ𝛄𝛄𝑘𝑘� >

0 � 
18 if 𝑞𝑞 >  0: 
19   ΔΔγ𝑘𝑘

(𝛼𝛼) ← 𝑞𝑞ΔΔ𝛄𝛄𝑘𝑘  
20  Δ𝛄𝛄𝑘𝑘 ← Δ𝛄𝛄𝑘𝑘−1 + ΔΔ𝛄𝛄𝑘𝑘 
21 Compute lattice rotation, update ℂ�

e
 and Schmid tensors 𝐏𝐏�(𝛼𝛼)

 

22  Set search directions: 𝐝𝐝(α) ← normalised 𝛼𝛼-th column of 𝐏𝐏�Tℂ�
e
𝐏𝐏� 

23  𝛔𝛔
𝑛𝑛+1
∗ ← 𝛔𝛔

𝑛𝑛
+  ℂ�

e
Δ𝐃𝐃 

24  𝑟𝑟 ← �∑ ��𝐏𝐏�(𝛼𝛼)T𝛔𝛔𝑛𝑛+1∗ − 𝐏𝐏�(𝛼𝛼)Tℂ�e𝐏𝐏�Δ𝛄𝛄� − 𝜏𝜏f
(𝛼𝛼)�

2
𝛼𝛼∈𝐴𝐴𝑘𝑘 , 𝐴𝐴𝑘𝑘 = �𝛼𝛼 ∈ 𝑇𝑇: �𝜏𝜏r

(𝛼𝛼)� > 𝜏𝜏f
(𝛼𝛼) ∨ �Δ𝛄𝛄𝑘𝑘� > 0 � 

 3. Stress update and algorithmic tangent computation: 

25 𝛔𝛔
𝑛𝑛+1

= 𝛔𝛔
𝑛𝑛

+ ℂ�
e
Δ𝐃𝐃 − ℂ�e𝐏𝐏�Δ𝛄𝛄  

26 ℂ�
ep

= �ℂ�
e

−1
+ 𝐏𝐏�𝐆𝐆−𝟏𝟏𝐏𝐏�T�

−𝟏𝟏
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Results and discussion 
In this section, the stability of the novel FPI-based stress update algorithm will be assessed. Its 
behaviour is compared against that of a conventional Newton Raphson (NR)-based CPP algorithm 
with an iterative active set update procedure. The NR-based algorithm, implemented as described 
in [12], has two options to initialise the active set at the start of the increment. It could (i) be 
initialised as the active set of the previous increment or (ii) include all systems for which the trial 
stress renders 𝜏𝜏r

(𝛼𝛼) > 𝜏𝜏f
(𝛼𝛼). Analyses with the NR-based algorithm are aborted if an update to the 

active set results in a set that has already been tried (and failed) during an increment. Both 
algorithms are implemented in a FORTRAN module that returns the increments of stress and 
plastic slip of a material point for a given deformation increment. All analyses below are conducted 
for an initially stress-free FCC single crystal of which the lattice coordinate system is aligned with 
the global coordinate system at the start of the analysis. 

Stability of the solution scheme for a deformation-driven problem. We first consider a simple 
shear test in which a material point is deformed by prescribing a total deformation gradient tensor 
with 𝐹𝐹12 = 4.0 in 10, 100 and 1000 increments. Solutions are attempted with both the FPI-based 
and the NR-based algorithm. For the latter, a converged solution was only reached for the test with 
1000 increments using option (ii) to initialise the active set. The FPI-based algorithm, on the other 
hand, converged for all increment counts considered. 

Figure 2 shows the resulting stress-strain curves. The solutions obtained with the FPI scheme 
stably converge with an increasing number of increments. For the simulation with 1000 
increments, the FPI-based algorithm yields the same result as the NR-based algorithm. The fact 
that the FPI-based algorithm correctly predicted the material response in as little as 10 increments 
shows that it converges to a solution even in the presence of large rotations. The FPI scheme thus 
allows for a large increment size. 

Figure 2 furthermore shows that only very few fixed-point iterations per increment are required 
during the simulations with 100 and 1000 increments. At 1000 increments, the average number of 
fixed-point iterations is comparable to the average number of NR-iterations. Recall that each fixed-
point iteration requires only function evaluations and simple bracketing operations to compute the 
solution to the 12 (for FCC) one-dimensional root-finding problems (line 11 of Table 3) and the 
scalar optimisation problem (line 17 of  Table 3), whereas an iteration with the NR-based algorithm 
requires to solve a system of equations of which the size equals the number of active slip systems. 
For the simple shear problem solved in 1000 increments, the average number of iterations in 
solving each root-finding problem is only 11, that to solve the scalar optimisation problem is 23, 
while the number of active system in the majority of the increments equals 8. These numbers and 
the iteration counts in Figure 2 indicate that the novel FPI scheme can be competitive with a 
conventional NR-based stress update scheme, especially when the latter requires multiple restarts 
due to the iterative active set search. A more detailed analysis of the computational time is, 
however, required to further asses the performance of the FPI scheme. 

Influence of lattice rotations. To investigate the effect of lattice rotations on the convergence 
behaviour of the FPI scheme, we reran the simple shear test with 10 and 100 increments while 
turning off the lattice rotations during the fixed-point iterations (Lines 21 – 23 in Table 3). 
Rotations are now updated in a staggered manner only after convergence of the FPI scheme.  
For the simulation with 100 increments, the resulting stress-strain curve in Figure 3 lags only 
slightly behind that of the corresponding analysis in which lattice rotations during the fixed-point 
iterations were enabled. For the simulation with 100 increments, lattice rotations during each 
increment are thus small. Figure 3 shows that in such a case, enabling lattice rotations during the 
fixed-point iterations does not significantly affect the number of fixed-point iterations. 
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This is different for the simulation with 10 increments. The resulting stress-strain curve in 
Figure 3 differs significantly from that of the corresponding analysis with lattice rotations during 
the fixed-point iterations enabled. This indicates that the fixed-point now moves considerably 
during the iterations. Clearly, staggered rotation updates do not yield accurate results for such a 
limited number of increments. Nonetheless, for this test, enabling rotation updates during fixed-
point iterations increases the average number of fixed-point iterations by a factor four. Severe 
lattice rotations within an increment could thus slow down the convergence of the FPI scheme. 

Stability of the solution scheme for a stress-driven problem. The tests considered so far were 
deformation-driven. As such, no global equilibrium iterations were needed to obtain a converged 
solution. To assess the stability of the proposed FPI-based stress update algorithm within such 
equilibrium iterations, we now consider a stress-driven problem. 

For this problem, the incremental deformation rate Δ𝐃𝐃𝑛𝑛 that produces the prescribed stress 𝐬𝐬𝑛𝑛+1 
at the end of an increment 𝑛𝑛 has to be iteratively computed. At the end of the 𝑘𝑘th equilibrium 
iteration, Δ𝐃𝐃𝑛𝑛 is updated as Δ𝐃𝐃𝑛𝑛

𝑘𝑘+1 = Δ𝐃𝐃𝑛𝑛
𝑘𝑘 + ΔΔ𝐃𝐃𝑛𝑛

𝑘𝑘 , with ΔΔ𝐃𝐃𝑛𝑛
𝑘𝑘 = ℂep−1�𝐬𝐬𝑛𝑛+1 − 𝐬𝐬𝑘𝑘�. The 

bracketed term in the last expression is the difference between the prescribed stress state and the 
stress as currently predicted by the stress update algorithm. Equilibrium iterations continue while 
the magnitude of the largest element in �𝐬𝐬𝑛𝑛+1 − 𝐬𝐬𝑘𝑘� is larger than 10-3 times the magnitude of the 
largest element in the initial difference vector �𝐬𝐬𝑛𝑛+1 − 𝐬𝐬1�. 

We considered a total of 968 different load cases in which the normal components of the stress 
tensor are prescribed. These components are given by 968 points that are evenly distributed on a 
sphere with a radius of 400 MPa to cover a large space of possible load directions. The Fibonacci 
lattice [17] is used to distribute the points. Each load case is applied in 10 increments and solved 
both with the FPI-based and the NR-based stress update algorithms. The FPI-based algorithm 
converged in 96.3% of the cases, whereas the NR-based algorithm converged in only 76.4% of the 
cases. For this stress-drive problem, the NR-based algorithm was found to converge best when 
using option (i) to initialise the active set. 

 

 

Figure 2: Stress – strain curves for a single 
crystal under simple shear deformation, 

prescribed in 10, 100 and 1000 increments, as 
predicted by a conventional NR-based [12] and 

the proposed FPI-based stress update algorithm, 
along with the average number of NR or FPI 

iterations per increment. 

Figure 3: Stress – strain curves for a single 
crystal under simple shear deformation, 
prescribed in 10 and 100 increments, as 

predicted by the proposed FPI-based stress 
update algorithm with (Mode = cont) and 

without (Mode = stag) rotation updates during 
the FPI-iterations, along with the average 
number of FPI iterations per increment. 
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The fact that not all load cases have converged is caused by a well-known property of rate-
independent CPP algorithms. If the active set changes during equilibrium iterations, the resulting 
changes in the algorithmic tangent can lead to non-convergence of these iterations [18]. The FPI 
scheme still uses an active set and hence is not invulnerable to this behaviour. Nonetheless, it does 
not suffer from breakdowns of the iterative active set search procedure that cause the NR-based 
algorithm to abort prematurely, and therefore allows more of the load cases to converge. Given 
that the FPI scheme is able to resolve the vast majority of load cases, it seems a promising 
alternative to CPP algorithms with iterative active set search. 
Conclusion 
A novel stress update algorithm for rate-independent crystal plasticity was presented in this work. 
It was developed based on the observation that the set of active slip systems does not have to be 
explicitly initialised and updated if, for each of the crystal’s 𝑛𝑛s slip systems, a single condition is 
formulated that has to be zero both when the system is active as well as when it is inactive. The 
slip state for which each of these conditions is zero is defined by a hypersurface in 𝑛𝑛s-dimensional 
space. We proposed a fixed-point iteration (FPI) scheme to trace these hypersurfaces until they all 
intersect. The resulting stress update algorithm simultaneously provides the set of active slip 
systems and their slip activity, without inducing spurious stresses on nonactive systems. It stably 
converges to a solution even when the crystal lattice rotates significantly during iterations, 
allowing for large increment sizes. The proposed stress update algorithm is furthermore shown to 
be efficient and significantly more stable than a conventional Newton-Raphson-based stress update 
scheme featuring an iterative active set search procedure.  
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