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Abstract. The simulation of machining process is an essential tool in the digitalization of the entire 
production chain. Currently, these simulations are not sufficiently precise to avoid the use of 
experimental tests in order to optimize machining operations and guarantee the quality of the 
machined parts. Some parameters, such as tool-chip contact length, are still underestimated, 
although they are critical for controlling heat transfer into the tool and implicitly its wear. In order 
to validate a numerical cutting simulation model, the tool-chip contact length experimentally 
measured should be used as a comparative quantity, in the same way as the cutting forces and the 
morphology of the chips is currently used. The objective of this paper is to propose an automation 
of tool-chip contact length measurements using image processing algorithms. The proposed 
algorithm was able to identify and measure the tool-chip contact length on more that 75% of 
images. The algorithm accuracy is evaluated by comparing computed and manually measured tool-
chip contact length, for different cutting conditions. It was found that it overestimates the contact 
length, especially in the case where the image quality is lower.  
Introduction 
Machining simulations are pivotal in the digital transformation of the entire production chain. 
However, current simulations lack the precision to replace experimental tests for optimizing 
operations and ensuring the quality of machined parts. The use of cutting forces and chips 
morphology experimentally obtained has become a commonly implemented practice to validate 
numerical simulation models of orthogonal cutting. Certain parameters, notably measured tool-
chip contact lengths, are less often used for comparison in numerical simulations, and when they 
are used, it turns out to remain underestimated. Particular attention should be paid to this metric, 
as it plays a critical role in controlling heat transfer into the tool and its consequent wear. To 
validate numerical cutting simulation models, experimentally measured tool-chip contact length 
should be utilized as a comparative metric, similar to how cutting forces and chip morphology are 
presently employed. 

Tool-chip contact length (Lc) is measured in two different ways: i) by measuring the imprint 
left by the chip on the tool rake face or ii) on images from video recording of cutting process. 
Storchak et al. [1] carried out orthogonal cutting tests on an AISI 1045 steel workpiece using 
various cutting speeds, uncut chip thicknesses and tool rake angles. Cutting forces and tool-chip 
contact length were measured and compared to those provided by numerical simulation of cutting. 
The purpose of their study was to find out the main parameters of the material behaviour law used 
in numerical simulation of cutting that influence the prediction of Lc. The chip formation during 
cutting was recorded using a video camera. Contact length was manually measured on images and 
associated numerical model served as a benchmark for comprehending variations in Lc. Sutter [2] 
delved into chip geometries during high-speed machining, employing a ballistic device for 
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orthogonal cutting conditions. The tool-chip contact length measurements were carried out using 
the software that controls the camera and enables the enhancement of specific contrasts only. Their 
experimental scrutiny of tool-chip contact length and shear angle provided insights into machining 
dynamics across varying speed and depths of cut. 

Iqbal et al. [3] executed a comparative study on tool-chip contact length in turning for two 
engineering alloys (an AISI 1045 steel and a Ti6Al4V titanium alloy), introducing new models 
tailored for high-speed machining. To measure the contact length, cutting inserts were analysed 
using a Polyvar optical microscope equipped with image processing software. The contact marks 
left by the chip on the tool rake face were employed to identify the contact area. The study 
underscored how machinability influences the prediction of Lc, crucial for understanding heat 
transfer and wear models. 

Ellersiek et al. [4] evaluated methods for measuring tool-chip contact length in wet machining, 
introducing innovative approaches such as the use of microtextured tools. The micro-textures were 
implemented on the tool's rake face in the direction of chip flow on the insert. This facilitates the 
determination of the contact length using laser textures applied at a steadily increasing angle. The 
initial micro-texturing is positioned 210 μm away from the tool cutting edge, meaning that only 
contact lengths beyond this distance can be detected. Following that, the undersides of the resulting 
chips at three distinct locations: beginning, middle, and end of the cutting were examined using 
topography images to obtain statistical validation. Also, in-situ visualization with high-speed 
recordings study, knowing the pixel size, was carried out, and compared to the results from the 
microtextured tool approach. The study accentuates the challenges in determining contact length 
in wet conditions, essential for comprehending the chip formation process. 

Klippel et al. [5] introduced an automated chip characteristics determination method, measuring 
thickness and curling radius, automatically derived from images of the chips through image 
processing, encompassing image preparation and contour detection. These automated 
measurements are then compared to manually obtained data. A Convolutional Neural Network 
was introduced to automate the decision-making process regarding the application of algorithms 
for continuous chips (utilizing average chip thickness) or segmented chips (considering minimum 
and maximum chip thicknesses along with chip segment lengths). The study aimed to determine 
average chip thickness, curling radii and segmentation lengths, laying the groundwork for 
automated chip analysis. 

Qazani et al. [6] proposed a prediction model of tool-chip contact length using an adaptive 
network-based fuzzy inference system (ANFIS) in orthogonal cutting of an AISI 4140 steel. To 
train and test the proposed models, a dataset of tool-chip contact length was created manually, for 
different machining conditions, using images captured with a microscope and imported in the 
image processing software Clemex. The experiments were conducted three times, and the average 
value for the tool–chip contact length was chosen during the analysis. The study focused on 
leveraging machine learning methods to predict Lc, showcasing the potential of ANFIS in 
enhancing accuracy. Arefin et al. [7] delved into chip formation mechanisms in one-dimensional 
vibration-assisted machining (VAM), uncovering the intermittent nature of cutting in VAM. Both 
orthogonal cutting simulations and experiments were carried out. Each test was conducted five 
times minimum to ensure repeatability and confirmation of the measurements, in terms of forces 
and chip dimensions (determined with a Scanning Electron Microscope). Their findings reveal a 
smaller tool-chip contact length in VAM compared to conventional machining, impacting chip 
thickness.  

Gzresik [8] proposed a computer-based technique to determine more accurately the tool-chip 
contact length, using image processing methods applied to images of tool rake face. The image 
processing was based on scaling, image contrast improving and colour filtering. As a result, both 
the tool–chip contact length and the actual area of contact were determined more accurately than 
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by using an optical microscope in the post-cutting stage. This aims to estimate the real contact area 
between the rake face and the sliding chip, ensuring a more precise determination of contact loads 
and heat fluxes. The study revealed a potential difference of approximately 25% between the actual 
and nominal contact areas. 

Barelli et al. [9] proposed an identification of tool-chip contact length in a Ti6Al4V titanium 
alloy turning, using image processing. An image pre-treatement was first applied, enhancing 
contrast on raw images, in order to highlight the tool and the chip. A 255 (white colour) grayscale 
value is attributed to the tool and 0 (black colour) to its edge. Then, by employing image processing 
techniques, the tool-chip contact length was automatically discerned in a provided pretreated 
image. This was achieved through the initial identification of the tool tip and cutting edge, utilizing 
contour coordinates and modifying the grayscale of the image. 

This study aims to automate the recognition of the separation point between the tool rake face 
and the chip, using diverse images recorded during orthogonal cutting of a titanium alloy. Tool-
chip contact length is measured on a minimum of 100 images for each machining condition. The 
accuracy of the algorithm is evaluated by comparing computed and manually measured tool-chip 
contact lengths. The evolution of tool-chip contact length with respect to uncut chip thickness and 
cutting speed is then evaluated.  
Experimental setup and cutting conditions 
Chip formation during orthogonal cutting was recorded by a high-speed video camera (Photron 
SA5). A long-distance microscope (Questar QM100) was used to observe the chip-forming zone 
in front of the cutting tool. The scene is illuminated by a fiber-optic lighting system. The optical 
setup and machine configuration are illustrated in Fig. 1a.  

 

 

a) b) 
Fig. 1. a) experimental setup; b) workpiece dimensions 

The machined part is a Ti6Al4V titanium alloy plate; its dimensions are shown in Fig. 1b. The 
cutting tool is made of tungsten carbide (CW-6%Co); it has a cutting angle of 0°, a clearance angle 
of 7° and an edge radius of about 20µm. The workpiece is mounted in a vice, which is attached on 
the machine table. The cutting speed is given to the machine table and the tool is held stationary. 
The cutting speeds (Vc) used for this study are: 30, 45 and 60m/min and the uncut chip thicknesses 
(h) are of 0.1mm and 0.2mm respectively. The resolution of the camera is of 768x648 pixels for 
all tests performed with the uncut chip thickness of 0.1mm, and it is of 1024x496 pixels for those 
with a 0.2mm uncut chip thickness. The acquisition frequency is of 15 000 frames/sec for all 
machining conditions used in this study.  
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Image processing methodology 
In the images depicting the formation of chips during machining, it is challenging to accurately 
discern the extent of contact between the cutting tool and the chip within the images captured by 
the camera (Fig. 2a). This difficulty predominantly arises due to the presence of shadows caused 
by the light position, which was not coaxially placed with respect to the optic axe, and some 
shadow area is formed in front of the tool. Therefore, to improve images clarity, the image 
processing methodology illustrated in Fig. 2 was applied.  

Initially, a Gaussian filter was utilized to reduce noise and smoothen the image. An example of 
the resulting image in shown in Fig. 2b. A Gaussian blur is applied: it is a low-pass filter that 
convolves the image with a Gaussian function, smoothing out high-frequency noise while 
preserving the overall structure and edges. By convolving the image with a Gaussian kernel, the 
filter reduces the impact of high-frequency components, effectively blurring or smoothing the 
image. This process helps to remove random variations or noise present in the image, that can 
interfere with the edge detection process, leading to false edges or erroneous results. This Gaussian 
blurring helps in suppressing small-scale details or insignificant edges that might not be of interest 
[10]. 

Gaussian blur is commonly favoured in various applications requiring noise reduction while 
preserving crucial details and edges in images. This preference stems from its characteristic 
gradual decrease in influence away from the kernel's centre. This weighting scheme allows for a 
better preservation of edges in comparison to average smoothing techniques. However, it can also 
lead to a loss of sharpness, especially in areas with important details or edges [11]. 

Following this, a Sobel filter was employed to emphasize edges and gradients, aiming to 
enhance the definition between the tool and the chip (Fig. 2c). The Sobel filter emphasizes edges 
by accentuating the differences in pixel intensity between neighbouring pixels. It calculates the 
rate of change of intensity and thereby identifies areas in the image where there is a significant 
change or sharp transition in intensity values. The Sobel operator consists of two convolution 
kernels: one for detecting horizontal changes and another for vertical changes. These kernels 
calculate the gradient approximation in the horizontal and vertical directions, respectively, by 
performing convolution operations on the image. Two separate gradient images are obtained, 
which can be combined or used independently to highlight and analyse edges [12]. 

The Sobel filter can be sensitive to noise in an image. High-frequency noise can lead to false 
edges detection [13]. To prevent these false edges being detected, a binary thresholding process 
was implemented to segment the image and highlight specific areas of interest, facilitating a clearer 
detection of the tool-chip contact (Fig. 2d). Binary thresholding involves converting the grayscale 
image into a binary image by setting a threshold value. Pixels with intensity values above the 
threshold are assigned one value (white), while pixels below the threshold are assigned another 
value (black), creating a high contrast representation [14].  
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e) 

 
f) 

 
g) 

Fig. 2. Different steps of the considered image processing: a) raw image; b) Gauss 
filter c) Sobel filter d) Binary thresholding e) Dilation f) Contour detection g) Last 

contact point detection 
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A sensitivity study was carried out to establish the threshold value to be applied to all images, 
whatever the machining condition used in this study. A threshold value of 35 enabled to clearly 
detect the chip, the tool, and the workpiece.  

Lastly, a dilation filter was used (Fig. 2e). The dilation filter can join or connect disparate 
elements within an image. It helps in merging separate regions or broken parts of objects present 
in an image. For each pixel in the image, this operation considers the neighbourhood defined by 
the structuring element. If the centre pixel of the structuring element overlaps with any part of an 
object in the image, that pixel is set to the maximum intensity value found within the 
neighbourhood. As a result, it connects broken parts of an object, fills in gaps, and generally 
expands the areas identified by the structuring element [15]. 

Now that a black and white image is obtained, the next step is to apply a function for edges 
detection. The function utilised in this study is “findContours()” from OpenCV python library; it 
takes in a binary image, where the objects are white and the background is black, and returns a list 
of contours found in the image. Each contour is represented as a list of points that form the 
boundary of an object [16].  

Contours are represented as lists of coordinate points, delineating the combined boundaries of 
the tool, the chip and the workpiece. After finding the contour (Fig. 2f), the objective is the 
automated detection of the last contact point between the tool and the chip. Assuming a closed 
contour oriented in trigonometric direction, the process involves identifying, for each image (and 
consequently, each contour), the red point in the top right hand of the contour (visible in Fig. 2g). 

Following the determination of this point, a specific contour segment (highlighted in blue in 
Fig. 2g) is chosen, ensuring it encapsulates the last contact point between the tool and the chip. To 
accomplish this, an analysis of the ordinate evolution along the contour is conducted, and a set of 
points containing the targeted breakpoint (representing the last point of contact between the tool 
and the chip) is selected. Subsequently, a piecewise linear regression method is applied to the 
identified contour using the Python library pwlf, as detailed in [17]. The input comprises the 1-D 
data representing the coordinates of the relevant contour, along with a specified number of line 
segments (three in this case). The output yields distinct fitting linear parameters for each segment 
and the identified breakpoints, indicating the boundaries between the different line segments.  

Then, the point of interest is designated as the identified breakpoint with the lowest ordinate, 
and this point is recorded in a dataset as the conclusive last contact point between the tool and the 
chip for a given input image. Finally, the actual tool-chip contact length is determined for each 
image by subtracting the ordinate of the tool basis. This specific point is manually assessed using 
the image processing software PFV4 for each cutting condition and the corresponding series of 
images. 
Results and discussion 
Accuracy of the algorithm 
In this investigation, the focus is on quantifying the uncertainty associated with measurements 
automatically conducted by the algorithm. To achieve this, a comparative analysis was conducted 
by juxtaposing these automated measurements with manually acquired data, as depicted in Fig. 3a 
and 3b. Manual measurements were made on selected images from a series, using the PFV4 image 
processing software. 

A comparison of measurements was executed for two different uncut thicknesses, revealing an 
offset in both scenarios: approximately 50 pixels for an uncut chip thickness of 0.2mm (resulting 
in a 17.8% relative error) and around 100 pixels for an uncut chip thickness of 0.1mm (yielding a 
30% relative error), depending on images quality. A prior study by Grzesik [8] concluded that 
actual and nominal dimensions studied using image processing could exhibit variations of about 
25%.  
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In some cases, both human eye and the algorithm detect the last contact point in roughly the 
same place, as shown in Fig. 4a. To elucidate the observed offset across all cutting conditions, an 
in-depth study was conducted, analyzing the images at each step of the image processing pipeline. 
Notably, human-eye assessments differed between raw images (without any processing) and 
images after applying the Sobel filter. The Sobel filter revealed previously concealed aspects of 
the tool and the chip, apparently hidden in the shadows in front of the tool  in the raw image, 
effectively filling the black areas surrounding the tool; therefore, the algorithm positions the tool-
chip last contact point at higher y-coordinate (visible on Fig. 4b and c). This discrepancy can be 
partially attributed to the experimental setup. Given the placement of the lamp on the right side of 
the tool and the potential coverage of the area of interest by its shadow. Manual measures involve 
some errors due to the difficulty of perceiving the last contact point, whereas the algorithm, 
employing various filters, could eventually detect and highlight the chip in shadowed area, 
imperceptible to the human eye. Therefore, the accuracy of the proposed method will be increased 
on images coaxially illuminated. Another factor could be the insufficient tuning of the filters for 
the presented problem, causing excessive modification of the images and resulting in a dilation of 
the tool and chip.  

  

a) b) 
Fig. 3. Y-coordinates of tool-chip last contact point vs image number, automatically and 

manually measured for a) Vc = 45m/min and h = 0.2mm; b) Vc = 60m/min and h = 0.1mm. 
Once manual measurements are validated for accuracy, an optimization process can be initiated 

to fine-tune filter parameters, ensuring the reliability of fully automatic measurements. In 
conclusion, this underscores the substantial impact of various filters, their tuned parameters, and 
the experimental setup (including light intensity and orientation), as well as image recording 
parameters (frame rate and resolution), on the observed differences relative to human measures. 
Tool-chip contact length evolution with machining conditions 
Fig. 5 illustrates the values of tool-chip contact length automatically measured on sets of 100 
images. On some images, the algorithm is unable to consistently identify the last point of contact, 
resulting in outliers. This is the case for the cutting conditions Vc = 30m/min, h = 0.2mm, on the 
first 25 images (Fig. 5a) and for Vc = 60m/min, h = 0.2mm, on the first 10 images (Fig. 5b).  
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a) b)  c) 
Fig. 4. Examples of the position of the last contact point manually and automatically 

identified. Contour detection for a) Vc = 45m/min; h = 0.2mm; b) Vc = 60m/min; h = 0.1mm 
and c) last contact point detection for Vc = 60m/min; h = 0.1mm 

For all cutting speed utilised in this study, the tool-chip contact length increases when increasing 
the uncut chip thickness. Iqbal et al. [3] measured a Lc of 200µm for an h = 0.1mm and a Lc of 
400µm for an h = 0.2mm, after machining a titanium alloy with a tool having a rake angle of 0° 
and with a cutting speed of 60m/min. These values are much lower than those measured in the 
current study. In the research of Iqbal et al. [3], the Lc was measured on the tool rake faces, which 
leads to an underestimation of Lc. Concerning tool-chip contact evolution when increasing the 
uncut chip thickness, a similar trend is found. 

 
 

a) b) 
Fig. 5. Tool-chip contact length vs image number for h of 0.1 and 0.2 mm and a) Vc = 30m/min 

and b) Vc = 60m/min.  
In Fig. 5, it can also be observed an increase of the tool-chip contact length between the first 

and last images of each dataset. In the case of machining using an uncut chip thickness of 0.1mm, 
an increase of about 19% is noted, for both cutting speeds illustrated in Fig. 5. Nevertheless, this 
falls within the measurement error range and therefore needs to be further investigated, on other 
sets of images taken at different stages of the machining process.   

Fig. 6 shows the tool-chip contact lengths automatically measured on sets of 100 images, for 
different cutting speeds. For the speed range considered in this study, there is no real change in 
contact length with respect to cutting speed, for both uncut chip thicknesses. This trend was also 
found in [3], for machining with and uncut chip thickness of 0.1mm. 
 

Last contact point, 
manually identified 

Last contact point, 
automatically identified 
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a) 

 
b) 

Fig. 6. Tool-chip contact length vs image number for a) h=0.1mm and b) h=0.2mm, for 
different cutting speeds.  

Conclusion 
In this study, a method for automatic detection of the separation point between the tool rake face 
and a titanium alloy chip was implemented. This was applied on diverse images recorded during 
orthogonal cutting. The identification of the tool-chip separation point then allowed the 
measurement of the contact length. The accuracy of the algorithm was evaluated by comparing 
computed and manually measured tool-chip contact lengths. The evolution of tool-chip contact 
length with respect to uncut chip thickness and cutting speed was also evaluated.  

The proposed method was able to detect chip, workpiece and tool contours and therefore the 
last contact point between the chip and the tool. The uncertainty of the automatic measurements 
was evaluated in relation to manual measurements on raw images. A maximum 30% relative error 
was found ; this could be attributed to different factors, among which light intensity and its 
orientation in relation to the cutting tool. The use of a more adapted positioning of the lighting 
system will enable the recording of images with no shadows in the area of interest. These will be 
done in a further research work.   

For all cutting speed utilised in this study, the tool-chip contact length increases when increasing 
the uncut chip thickness and no clear evolution was found when increasing the cutting speed. 

As the proposed method detects chip contour, automated measurement of its corresponding 
parameters (thickness - for a ribbon like chip and number of segments-in the case of a serrated 
chip) could be considered in a future work, on higher quality chip formation images. 
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