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Abstract. This study addresses the ever-increasing demands on glass optics for LiDAR systems 
in autonomous vehicles, highlighting the pivotal role of the recently developed Nonisothermal 
Glass Molding (NGM) in enabling the mass production of complex and precise glass optics. While 
NGM promises a significant advancement in cost- and energy-efficient solutions, achieving the 
requisite shape and form accuracy for high-precision optics remains a persistent challenge. The 
research focuses on expediting the development phase, presenting a methodology that strategically 
utilizes a sparse dataset for determining optimized molding parameters with a minimized number 
of experimental trials. Importantly, our method highlights the exceptional ability of a robust 
surrogate model to precisely predict the accuracy outputs of glass optics, strongly influenced by 
numerous input molding parameters of the NGM process. This significance emphasizes the 
surrogate model, which emerges as a promising alternative to inefficient traditional methods, such 
as time-consuming experiments or computation-intensive simulations, particularly in the realm of 
high-precision production for LiDAR glass optics. In contributing to optics manufacturing 
advancements, this study also aligns with contemporary trends in digitalization and Industry 4.0 
within modern optics production, thereby fostering innovation in the automotive industry. 
Introduction 
The rapid evolution of autonomous vehicle technology has ushered in a new era of transportation, 
promising unprecedented safety and efficiency. At the forefront of this technological revolution is 
Light Detection and Ranging (LiDAR), a key sensing technology that enables vehicles to navigate 
and perceive their surroundings with remarkable precision. As LiDAR systems play a critical role 
in providing real-time, three-dimensional mapping of the vehicle's environment, the efficacy of 
the optical components is paramount to ensure accurate and rapid data acquisition. In the quest to 
enhance LiDAR systems, the focus on optical components has become pivotal, serving as a 
cornerstone for achieving heightened performance and reliability. Glass optics, known for 
outstanding mechanical strength, durability, and exceptionally high transparency, stands out as a 
compelling solution to meet the rigorous demands of LiDAR systems. Nevertheless, amidst the 
recent growth in LiDAR technology, glass optics manufacturers are facing rising demands, 
including increasing geometrical complexity, high form accuracy, surface roughness, exceptional 
optical functionalities, reduced energy consumption, and cost-effectiveness from the dynamic 
LiDAR market. 

Addressing these challenges, the “Glass4AutoFuture” project at Fraunhofer IPT, Germany 
aimed to develop a cost- and energy-efficient manufacturing technology enabling the high-volume 
production of optical glass components essential for future car concepts. Nonisothermal Glass 
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Molding (NGM), a replication-based process, has emerged as a viable technology for 
manufacturing complex and precision glass optics on a mass production scale [1,2]. In NGM, a 
glass preform is compressed between two mold halves at high temperature, and after cooling, 
optics with the desired shape are achieved without additional post-processing steps like grinding 
and polishing [3]. With the ability to produce multiple optics in parallel and eliminating the need 
for postprocessing, NGM holds the potential for high-volume production [4]. 

Nevertheless, the primary challenge that remains with NGM technology is to achieve the 
desired shape and form accuracy required for high precision LiDAR optics. These characteristics 
are influenced by multiple factors, including highly nonlinear deformation behaviors arising from 
nonequilibrium viscoelasticity of glass, the heat transfers between glass and molding 
environments, and numerous forming parameters. Understanding the thermal-mechanical 
behaviors of glass during the forming process and optimizing the forming parameters are crucial 
to satisfy the requirements of the glass optics [5]. These tasks are far from trivial, given the 
multitude of parameters influencing the accuracy of the optics, making the process development 
through an experimental trial-and-error method inefficient. 

This study presents a method for determining optimized molding parameters with a minimal 
number of experimental trials. The proposed solution involves the development of a robust 
surrogate model that enables the multi-objective optimization of glass molding process parameters 
using a sparse dataset. The procedure consists of two steps. First, a process simulation model was 
established, accounting for the highly nonlinear viscoelastic deformation behavior of glass and all 
heat transfer phenomena occurring in the forming process. The simulation model serves as a tool 
to generate data for developing the surrogate model. The subsequent step involves exploring 
different surrogate models, acquisition functions, and selection strategies to minimize iterations 
while converging to the global solution. The results demonstrate that the surrogate model 
accurately approximates the outputs features of the product quality, offering reliable estimations 
that can substitute the computationally expensive simulations or time-consuming experiments. 
Optics demonstration and experimental setup 
To demonstrate the methodology proposed in this study, an optical lens was purposefully designed 
for an optics demonstration. Fig. 1 presents the lens design and underlies the accuracy 
requirements for the demonstration. The design features a plano-convex lens commonly utilized 
for laser beam collimation in numerous LiDAR laser scanner systems. The precision of the optical 
lens is crucial for ensuring the high performance of the LiDAR system, as any single photon loss 
in the laser beam is unaffordable. Consequently, the form accuracies of the plane and spherical 
surfaces of the lens emerge as critical considerations. For this reason, form deviation of the 
spherical surface and center thickness were specifically identified as the primary criteria for 
optimizing the NGM process. 

 
Fig. 1. Design and specifications of the optical demonstration. 
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Fig. 2 outlines the process chain, experimental setup, and the process diagram indicating the 
parameters designed for producing the chosen lens demonstration. In the initial step, multiple glass 
preforms were heated in an external oven, while the two mold halves were preheated at a constant 
temperature, referred to as the mold temperature (𝑇𝑇𝑀𝑀). Once the preforms reached a predefined 
glass temperature (𝑇𝑇𝐺𝐺), each preform was automatically transferred to the molding position by a 
robot arm. At this stage, the glass preform was compressed in the space between two mold halves 
at a constant pressing velocity (𝑣𝑣), until a predefined pressing force (𝐹𝐹), set to prevent glass 
breakage, was attained. The force was maintained for a certain period – the pressing time (𝑡𝑡𝐻𝐻) – to 
allow for complete deformation of the glass into the mold cavity. Following the molding step, the 
molded glass optics were transferred to an annealing oven, where multiple molded glass lenses 
underwent sequential cooling steps, comprising three cooling times (𝐶𝐶𝑡𝑡𝑖𝑖, i=1-3). Each cooling time 
was carefully defined to allow the release of stress remaining after the molding step, ultimately 
achieving the desired shape of the molded lens after cooling at room temperature. 

 
Fig. 2. Description of NGM process and the process parameters required for optimization. 

Process modeling 
As depicted in Fig. 2, the molding process involves a set of 8 parameters, comprising of the set 
temperature of glass for molding 𝑇𝑇𝐺𝐺, predefined mold temperature 𝑇𝑇𝑀𝑀, molding velocity 𝑣𝑣, 
pressing force 𝐹𝐹, molding time 𝑡𝑡𝐻𝐻, and three phases of cooling in an annealing furnace 𝐶𝐶𝑡𝑡,𝑖𝑖  where 
𝑖𝑖 = 1 − 3. The product quality is highly sensitive to these parameters, where adjustments to 
individual parameters can cause significant alterations in the final shape and form accuracy of the 
molded lens. The sensitivity arises from the complex, nonlinear thermoviscoelastic behaviors 
exhibited by glass during the molding step [6–8], coupled with nonlinear shrinkage behaviors 
resulting from structural relaxation during the cooling step [9–11]. Consequently, the conventional 
trial-and-error method for adjusting process parameters is both demanding and labor-intensive. 

To address these challenges, this study introduces a numerical modeling approach for the NGM 
process. The overall goal is to understand the correlation between the process parameters (inputs) 

Heating MoldingTransferring Annealing

Glass preform Final glass lens

Te
m

pe
ra

tu
re

, T
 [°

C
]

Fo
rc

e,
 F

 [k
N

]

Glass temperature, TG Mold temperature, TM Mold displacement, u Force, F

TG
TM

v
F

Heating Molding Annealing

Cooling 1, Cooling 2, Cooling 3, 

From glass preform to final molded glass lens produced by NGM process

tH

Heating 
oven

Hot glass

Preheated mold

Molded lenses

Annealing furnace



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 1779-1788  https://doi.org/10.21741/9781644903131-197 

 

 
1782 

and the accuracy criteria (outputs), facilitating a multi-objective optimization method that 
minimizes the required dataset, given the computational expense of process simulation. 

Fig. 3 presents the simulation model constructed to capture the thermal- and mechanical 
responses throughout the molding process. A coupled thermal-mechanical model was, therefore, 
necessary. The thermal model calculates the temperature distributions within the molding 
components, accounting for their thermal interactions with the molding environment. All relevant 
heat transfer phenomena at the boundaries, including convection and radiation, were considered. 
Convective and radiative heat transfer coefficients were defined through the utilization of infrared 
thermographic techniques, with the methodology and inverse heat transfer solution detailed in 
[12]. In addition, the heat transfer across the glass-mold interface, governed by the thermal contact 
conductance depending on the pressure 𝑝𝑝, interfacial temperature 𝑇𝑇, and surface roughness 𝑅𝑅𝑅𝑅, 
was adopted from prior works [13,14]. 

 
Fig. 3. (a) Setup and molding components, and (b) coupled thermal-mechanical model of the 

NGM process [12]. 
The mechanical model addresses the material responses of glass, including the stress relaxation 

and structural relaxation phenomena during molding and subsequent cooling. In the nonisothermal 
molding process, there are constantly heat exchanges at the glass surfaces with the colder molds 
and the molding environment, leading to a transition in the glass state from equilibrium to 
nonequilibrium [15]. Capturing the relaxation nature of the nonequilibrium glass necessitates a 
robust material model incorporating three variables: time, temperature, and thermal history [15]. 
A material model, developed in previous work [9], was adapted here to address the stress relaxation 
behaviors over the entire range of molding temperature, including thermo-viscoelasticity during 
the molding step and the shrinkage behaviors of glass due to the structural relaxation during the 
annealing step. Furthermore, the mechanical interaction at the glass-mold interface was modeled 
by a Coulomb’s friction model. The friction coefficients, dependent on temperature 𝑇𝑇, pressure 𝑝𝑝, 
and sliding velocity 𝑣𝑣, were adopted from the previous work [16]. 
Methodology 
Conventional optimization methods commonly rely on 1st or 2nd order gradients of objective 
function or employ bio-inspired optimization algorithms such as evolutionary algorithms, which 
necessitate a large number of objective function evaluations to identify the global solution. In 
contrast, Bayesian Optimization (BO) stands out as a derivative-free machine learning method that 
endeavors to comprehend the intricate black box function of the system with limited and sparse 
dataset availability. Notably, BO exhibits efficiency in handling objective functions containing 
diverse systematic noises. 
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Multi-Objective Bayesian Optimization (MOBO). The versatility of BO becomes evident in 
multi-objective optimizations (MOO), where it diverges from single-objective optimization 
algorithms. Instead of converging to a single solution, MOO using BO converges to the Pareto 
optimal set of solutions within the design space of input features. This is especially pertinent when 
dealing with conflicting objective features, where enhancing one feature inevitably leads to the 
degradation of others. The set of corresponding output values for the Pareto optimal solutions is 
referred to as the Pareto Front (PF) set for a collection of conflicting objective parameters [17,18]. 

Building on these principles, the present study employed a MOBO framework, illustrated in 
Fig. 4. It encompasses four key steps: an initial sampling method, the construction of a surrogate 
model, the definition of an acquisition function, and the implementation of a selection strategy. 
This holistic approach allows MOBO to effectively navigate the complexities inherent in multi-
objective optimization scenarios. 

 
Fig. 4. Flowchart of the multi-objective Bayesian optimization. 

Surrogate model. A surrogate model, a supervised machine learning approach, emulates 
complex and costly black box functions with high accuracy [19]. In this study, Gaussian Process 
(GP) was chosen among various supervised models like artificial neural networks (ANN) and tree-
based methods due to its simplicity, fewer hyperparameters, and reduced sensitivity to the initial 
design of experiments [20]. GP proves advantageous in handling sparse datasets, avoiding 
overfitting issues that more complex models like ANN may encounter when trained on limited 
data. In this study, the GP surrogate model is trained independently for each objective parameter. 

GP training: During the initial GP training on the black box function f: Ω→ℝk with “k” 
elements of objectives, and design space of Ω∈ℝd, a prior model was defined by mean function 
m(x�): Ω⟶ℝ, and Matern kernel (covariance) function k(x�,x�): Ω×Ω⟶ℝ. This prior model was 
established without observing available data, forming a prior belief over the design space. For any 
given input variable x�, the prior of GP was expressed as: 

f(x�)∽N(m(x�), k(x�,x�)).  (1) 
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Posterior GP training: Subsequently, a posterior of the GP was trained to refine the prior model 
using the available dataset, Dn = {(𝐗𝐗�,𝐘𝐘�)} = {(X�1, Y�1), (X�2, Y�2), … , (X�n, Y�n)} expressed as: 

f(x�)∽N(μ(x�), σ(x�)), μ(x�) = m(x�) + kK-1Y�,  σ(x�) = k(x�,x�) - kK-1kT, 

where 𝐤𝐤=k(x�, X���), and 𝐊𝐊 = k(X�, X���). (2) 

Details for the surrogate model, prior, and posterior functions are elaborated in [17,21,22]. 
Acquisition function: Once the surrogate model Gk was constructed to estimate each objective 

function fk, k ∈ ℕ on available dataset, the acquisition function, serving as a cost-effective function 
to evaluate, was simply defined using the mean μ(𝐱𝐱�) and the uncertainty σ(𝐱𝐱�) of the posterior 
function of the surrogate model: 

u(x�|Dn) = u(μ(x�), σ(x�)). (3) 

The primary objective of the acquisition function is to suggest the most promising single or 
batch of samples to be added to the dataset in the next iteration. This involves striking a balance 
between exploitation, focusing on the region with the highest mean value of the negative objective 
μ(𝐱𝐱�), and exploration, exploring areas with high objective function uncertainty σ(𝐱𝐱�). The global 
maximum solution of the acquisition function, representing the trade-off between exploitation and 
exploration, guides the selection of new samples in the next iteration: 

x�new = arg max
x�∈Ω

u(x�|Dn).  (4) 

Examples of well-known acquisition functions include Expected Improvement (EI), Probability 
of Improvement (PI), Upper Confidence Bound (UCB), and Thompson sampling [18]. In this 
study, the Identity function, simply equal to mean μ(. ) of Gk, is used as an acquisition function. 

Selection strategy: After deriving the optimum points from the acquisition function, there are 
two methods for selecting sample(s) for the next iteration of the algorithm: sequential selection 
and batch selection. In sequential selection, one optimum point is chosen as the candidate for the 
next iteration in each cycle. While limiting the number of newly added samples to the dataset, it 
results in a high number of algorithm iterations and a low convergence rate. In contrast, the batch 
selection method suggests a batch of samples, improving the convergence rate of the algorithm. 
This strategy is particularly suitable when the black box function can be evaluated in parallel. 

Three established methods for choosing the batch of samples for the upcoming iteration of 
MOBO are Kriging Believer (KB), Local Penalization (LP), and Believer-Penalizer (BP) [20–22]. 
Results 
The optimization process involves a set of 8 parameters. Table 1 provides an overview of the 
process parameters along with the selected range of physical constraints for each parameter. The 
table serves as a comprehensive reference, outlining the specific boundaries within which the 
MOBO framework operates to fine-tune the system and achieve optimal outcomes. 

Automated optimization procedure. To automate the entire optimization procedure, the FEM 
model representing the entire NGM process, was treated as the black box function. This model, 
scripted in Python, seamlessly integrated with the MOBO algorithm. This integration allows the 
MOBO algorithm to generate any required simulation run through a simple command. The process 
parameters in Table 1 were defined as functional variables in Python, enabling the MOBO 
algorithm to efficiently modify and submit relevant simulations during its iterative runs. After each 
FEM simulation run's completion, essential output data was extracted from the .DAT file generated 
by ABAQUS and transmitted to MOBO as output parameter values. 
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Table 1. List of process parameters with their physical ranges defined for NGM process. 
Parameter Denotation Unit Lower bound Upper bound 

Glass temperature 𝑇𝑇𝐺𝐺  [°C] 750.0 850.0 
Molds temperature 𝑇𝑇𝑀𝑀 [°C] 480.0 580.0 
Molding velocity 𝑣𝑣 [m/s] 1e-3 2e-2 

Pressing force 𝐹𝐹 [kN] 5.0 30.0 
Pressing time 𝑡𝑡𝐻𝐻 [s] 5.0 30.0 

Cooling time 1 𝐶𝐶𝑡𝑡,1 [s] 1800.0 18000.0 
Cooling time 2 𝐶𝐶𝑡𝑡,2 [s] 1680.0 168000.0 
Cooling time 3 𝐶𝐶𝑡𝑡,3 [s] 2742.0 13710.0 

For MOBO implementation, the open-source Python library AutoOED was employed [21], and 
its hyperparameters were tuned following the methodology in [22]. The primary objective was to 
minimize two parameters of the black box function, representing the required accuracy criteria of 
the glass lenses. These objectives include: (i) optimizing the form accuracy of the molded lenses, 
quantified as the Root Mean Square Error (RMSE) of the convex surfaces between the desired 
shape 𝑦𝑦 and that estimated by the FEM simulation y�, as per Eq. 5, and (ii) minimizing the absolute 
error between the center thickness of the lens and the target value given as 25.7 mm. 

RMSE(y�, y)= �∑ �y�i-yi�
2

n
n
i=1 .  (5) 

As presented in Fig. 4, the MOBO algorithm commenced with the generation of 20 quasi-
random sample distributions along each input feature using Latin Hypercube Sampling (LHS) [23], 
denoted as 𝑿𝑿�𝟎𝟎  =  (X1,  X2,…, X20) ∈ R20×8. These samples constituted the initial design space. 
After running 20 simulations for each input sample, the objective parameters were evaluated, 
resulting in 𝐘𝐘�𝟎𝟎 = (Y1, Y2,…, Y20)∈R20×2, referred to as the initial performance space. With both 
the initial design and performance spaces created, the MOBO algorithm was initiated, and through 
each iteration, 20 new samples were added to the dataset. These samples underwent FEM 
simulation to obtain the associated output parameters. This process continued until one of the 
predefined stopping criteria was attained. Two stopping criteria were defined: the first criterion 
was satisfied if the form accuracy error and center thickness error reach values below 5 µm and 
0.1 mm, respectively. The second criterion was when the total number of iterations reaches 10, 
equivalent to a dataset of 200 samples. 

The output results for each iteration were visually represented in a performance space plot, 
where the objective features were plotted against each other. Fig. 5(a) exhibits the outcomes of the 
LHS, while Fig. 5 (b) illustrates the results of the MOBO after 7 iterations. The upper plots 
showcase the full performance spaces, and the lower plots zoom in on the rectangular region 
delineated by a dash-dot line in the upper plot. The green region in the lower left corner of both 
lower plots represents the area where the first objective criterion was fulfilled. The grey zones 
indicate areas where only one of the objective features satisfied the criterion, while the orange 
zone signifies that none of the targets were achieved. Given that 20 samples were generated in 
each iteration, Fig. 5(b) only shows the best sample achieved after each iteration, considering both 
objectives. This selected set is termed the Pareto Front (PF) for that specific iteration. 
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Fig. 5. Results of the MOBO algorithm on FEM simulation of the NGM process. 

The inherent randomness of LHS is evident in Fig. 5(a), as data samples spread far from the 
defined target values, and only one best sample from the first generation is located in the grey 
zone. However, Fig. 5(b) demonstrates a significant improvement in objective values obtained by 
iteration 4, with the algorithm meeting the predefined criteria for the first time in iteration 5. 
Continuing for two more iterations, MOBO reveals that not only can global solutions be enhanced, 
but potential local minima in the design space can also be uncovered, thanks to its exploration and 
exploitation features. In iteration 7, 12 more samples lie in the grey zone, highlighting MOBO's 
capability not only in identifying global optimum points but also in intelligently designing 
experiments by detecting possible local minima, thus reducing the required number of data 
samples compared to conventional Design of Experiment (DoE) algorithms. 

To assess the prediction accuracy of GP as the surrogate model in MOBO, the absolute error 
between the estimated and target values is given for each sample in Fig. 6. After 7 iterations, 
encompassing 160 samples including the initial LHS, the error plots for both output features nearly 
reach zero. The result reveals that with this sample size, the surrogate model accurately 
approximates the output features, offering reliable estimations that can substitute the 
computationally expensive FEM simulations. In addition, the GP prediction error significantly 
diminishes after generating 80 samples (4 iterations). This marks the first instance where MOBO 
detects the vicinity of the global optimum solution, as illustrated in Fig. 5. Despite slight 
fluctuations in the center thickness error plot during iteration 5, the algorithm effectively refines 
the global solution, emphasizing the robustness and efficacy of the MOBO methodology. 

(a) (b)
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Fig. 6. The absolute error between the outputs predicted by Gaussian process and those given by 

FEM simulation. 

Summary 
Tackling the challenge of finding the global solution while minimizing operational time is a 
fundamental concern in optimizing processes with multiple variables, particularly in precision-
demanding applications like glass molding. While experimental operations are time-consuming 
and labor-intensive, simulating glass molding processes requires huge computational resources. 
Our research enlightens the effectiveness of a MOBO framework as a surrogate model, offering 
an alternative approach to predict product accuracy based on multiple molding parameters. The 
methodology holds promising implications for industry applications. By conducting a limited 
number of trial experiments during the process development phase, industrial users can efficiently 
obtain optimized parameters aligned with specific product accuracy criteria, leading to accelerated 
phases of process development and production ramp-up. This study aligns with current trends in 
digitalization and Industry 4.0, contributing to innovation within the automotive industry. 
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