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Abstract. Fine blanking is a cost-effective manufacturing technology for mass-producing sheet-
metal components with high sheared surface quality. For steels with higher carbon content, the 
quality of fine blanking products is significantly influenced by microstructural characteristics, such 
as the morphology and distribution of carbides, which can be controlled through heat treatment 
[1]. Precisely, there is a relationship between spheroidization of carbides and the occurrence of 
tears at the sheared surface of fine blanked parts especially at the tip of a gear [2]. Furthermore, 
material characteristics can vary both along a sheet-metal coil and from coil to coil despite tight 
tolerances [3] leading to unpredictable tearing. To monitor the fluctuation of material 
characteristics at regular intervals along sheet-metal, non-destructive testing (NDT) is used before 
the process providing information about the microstructure. While in the state of the art, the data 
from NDT was used to calculate the mechanical properties and to optimize the process based on 
these properties [4], in this paper, NDT data is used to predict the sheared surface tears of fine 
blanked parts, without the reduction of the content-rich data to mechanical properties. For this 
purpose, an experiment was conducted on the fine blanking of the steel 42CrMo4+A to produce 
components resembling a gear shape. Prior to the manufacturing process, the material was 
measured using an eddy current sensor, and subsequently the tearing of the fine blanked parts was 
evaluated. For the prediction of sheared surface tears, linear regression methods were used, and a 
feature selection was done to find the excitation frequencies of the eddy current sensor with the 
highest impact on the tearing. It was shown that the eddy current measurements along the coil 
contain valuable information about the tearing of the fine blanked part.  
Introduction and state of the art 
Despite strict controls, stochastic fluctuations in material properties already occur during steel 
production [5]. During metal processing, these fluctuations are propagated all the way to the final 
sheet metal coil. One example of this is elongation at fracture, which can fluctuate by up to 
approximately 10% within a cold-rolled sheet metal coil [6], while the fluctuations between 
different batches can be in the range of 13% to 21% [3,6,7]. For different manufacturers, the 
elongation at fracture can even vary by up to 27% [7]. These fluctuations in the material properties 
of the input material are currently a significant problem leading to rejects and decreasing the 
process stability and thus, leading to expensive machine downtimes and time-consuming trial-and-
error adjustment of sheet metal processes. 

Fine blanking is one of those sheet metal processes used to manufacture high-accuracy sheet 
metal parts such as gears or sprockets [8]. Due to a blank holder, a counter punch and a vee-ring, 
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the fine blanking process is operated with three independently acting process forces [9] (cf. Fig. 1 
a). The process forces combined with a small die clearance (u ≈ 0.5% of the sheet thickness) and 
a vee-ring lead to a superimposed compressive stress (cf. Fig. 1 b) and enables the material to flow 
leading to a 100% smooth sheared surface, which can be used as a functional surface [2]. Die roll, 
tear-off and tears reduce the load-bearing proportion of functional surfaces and thus represent 
quality-influencing features [10]. 

Fig. 1. a) Fine blanking setup and b) a detailed view of the shear zone 
The influence of material properties on the plastic flow and the sheared surface quality is 

described in various places in the literature, for example in relation to carbides and cementite 
structures [9] and hardening [11]. For unalloyed carbon steels with a carbon content greater than 
0.15% and steels with a higher alloy content without annealing on spheroidal cementite, lamellar 
cementite or carbides occur and, due to their brittle properties, these can lead to tears as well as 
tear-offs on the sheared surface [12]. However, the distribution and shape of the carbides fluctuates 
statistically along the coil, so that with additional small tip radii and tip angles of the part 
geometries, it is difficult to achieve a stable and economic fine blanking process especially for 
steels with high carbon content. Moreover, theses fluctuations in material properties especially 
microstructural differences in the distribution and shape of carbides lead to unpredictable tearing 
for high carbon steels. Nevertheless, material properties are typically measured only at the 
beginning and end of the coil using uniaxial tensile tests as well as metallographic analysis. Thus, 
there is no information about the exact material properties along the coil. In addition, uniaxial 
tensile tests cannot represent the complex stress state during fine blanking, as the material in the 
shear zone is subjected to three-dimensional compressive stress [13]. 

Monitoring the coil through non-destructive testing (NDT), such as eddy current (EC) 
measurements, can capture variations in material properties and create a digital shadow of the coil, 
referred to as Digital Coil. In sheet metal processing, electromagnetic methods are generally used 
for NDT, as there is a correlation between the mechanical and electromagnetic properties of sheet 
metal, as the microstructure influences both [14]. It has already been shown that sensors such as 
EC sensors, the 3MA sensor or the IMPOC sensor are successfully used for inline monitoring of 
coils. The data from these measurements correlate with mechanical properties and enable the 
prediction of tensile strength, yield strength, residual stress and hardness along the coil [14–16].  

Various regressions and machine learning have been used to predict these parameters [17] and 
to detect cracks and material thinning [18]. Khan et al. showed a correlation between the EC 
measurements and austenite phase fractions [19]. Utilizing the mechanical parameters derived 
from EC measurements, a knowledge-based control approach was implemented to mitigate diverse 
factors affecting draw-in in the deep drawing process [20].  Furthermore, feedback control 
strategies were employed to minimize the impact of material variations [21].  Heingärtner et al.  
developed and tested an intelligent control system at an industrial scale. This system employed 

½ 𝐹N ½ 𝐹N

𝐹St

𝐹G

Legend: 𝐹S𝑡 – Punch force, 𝐹G – Counter force, 𝐹N – Blankholder force

𝐹G

Work piece

σ
σ

σ

𝐹St ½ 𝐹NPunch

Blank holder

Vee -ring
Sheet

Die clearance
Die plate

Counter punch



Material Forming - ESAFORM 2024  Materials Research Forum LLC 
Materials Research Proceedings 41 (2024) 1416-1425  https://doi.org/10.21741/9781644903131-157 

 

 
1418 

numeric simulations, mechanical properties obtained through EC, process settings, and draw-in 
measurements to optimize the deep drawing process of the production of kitchen sinks [22].  In a 
study for a stamping process, material fluctuations were recorded using EC measurements to 
analyse different motion sequences for a servo press [23]. Purr showed in a data analysis in a 
pressing plant that fluctuations in material properties, measured by IMPOC sensors, have a 
significant influence on the quality of car body parts [24]. A full overview of NDT methods for 
sheet-metal forming is given in [4]. 

The common theme of these publications regarding NDT in sheet metal processing is that first 
the mechanical parameters are derived from the sensor data and then the process is optimized based 
on these parameters. But only few studies measure material properties with NDT and relate them 
directly to the resulting part properties like quality or parameterization of the sheet metal processes. 
Since the reduction to mechanical parameters reduces the information content of the NDT data, 
the approach to directly combine NDT data with process information enables a big potential. 
Therefore, this paper answers the following research question: 
(RQ) Do the eddy current measurements along the coil contain information about the expected 

quality of the fine blanked part, in particular about the tearing at a selected tip of the part? 
To answer this question an experiment was conducted where strips from a coil were measured with 
an EC sensor, subsequently the strips were fine blanked and the quality of the resulting part was 
evaluated. The experimental setup and the resulting dataset are described in the following two 
sections. After the data acquisition a linear regression with a feedforward feature selection was 
fitted on the EC data to predict the quality of the fine blanked part, specifically the height and 
width of the tear on a selected tip. The feature selection also allowed to derive insights as to which 
excitation frequencies and evaluation harmonics are best suitable to predict the tearing. Section 4 
is dedicated to the methodology of the regression. The results of the data analysis are presented in 
the fifth section. 
Experimental setup 
To investigate the relationship between the material data measured by EC and the quality of the 
fine blanked part, the sheared part geometry and the material was deliberately configured to align 
with conditions predisposing the occurrence of tears. Since tips with small angles and radii are 
challenging both in terms of the resulting part quality as well as punch edge load, the chosen part 
geometry, shown in Figure 2 a), consists of nine tips with different tip angles and tip radii 
representing an analogue application for tribologically stressed functional surfaces. 
As material a coil of hot rolled and annealed 42CrMo4+A (EN 10132-3 respectively AISI 4140) 
with a sheet thickness of 6.95 mm was separated into numbered sheet metal strips. The material 
properties yield strength Rp0.2, ultimate tensile strength Rm, elongation at fracture A, A80 are 
documented in Table 1. The medium carbon steel 42CrMo4+A finds application in critical 
components within the automotive and aircraft industries, such as gears, spindles, rods, and rams 
and it is often used in forming processes. However, the high thickness of the material combined 
with a high carbon level causes difficulties for the resulting part quality. 
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Fig. 2. Geometry of the sheared part (a) and height and width of the tear at the tip under the 
microscope (b) 

After measuring the sheet metal strips with the MAGNATEST D from Foerster, the fine 
blanking experiments were conducted on a servomechanical fine blanking press Feintool XFT 
2500 speed. Fine blanking was performed with a modular designed single part producing tool (one 
part per stroke). For each strip one fine blanked part was produced. The blanking punch and die 
were manufactured from Böhler S390 powder metallurgical high-speed steel with a hardness of 
65 HRC and coated with the Platit FeinAl coating (AlCrN-based nano-coating). The chlorine-free 
lubricant Fuchs Wisura FMO 5020 was used for the experiments, further process and tool 
parameters are specified in Table 2. 

Table 1. Mechanical properties of 42CrMo+A. 
Material 𝐑𝐑𝐩𝐩𝐩𝐩.𝟐𝟐[𝐌𝐌𝐌𝐌𝐌𝐌] 𝐑𝐑𝐦𝐦[𝐌𝐌𝐌𝐌𝐌𝐌] 𝐀𝐀 [%] 𝐀𝐀𝟖𝟖𝐩𝐩 [%] 
42CrMo4+A 381 591 29.1 26.5 

The tool was initially designed for 5 mm material, leading to a relative die clearance u ≈ 0.3% 
of the sheet thickness. In the experiment, 245 valid parts were produced, and every tip of every 
part was torn. To evaluate the quality, the height and the width of the tears for the tip with tip angle 
80% and tip radii 1.1 mm was measured manually as shown in Figure 2 b) using a Keyence VHX-
5000 digital microscope.  

Table 2. Process and tool parameters used for the fine blanking experiment. 
Blanking velocity 𝐯𝐯𝐁𝐁 45 mm/s Die chamfer angle 35° 
Vee-ring force 𝐅𝐅𝐕𝐕𝐑𝐑 440 kN Die chamfer height 0.3 mm 
Counter force 𝐅𝐅𝐂𝐂𝐌𝐌 170 kN Vee-ring distance 2.5 mm 
Die clearance 𝐮𝐮 20 μm Vee-ring height 0.7 mm 

Dataset description  
The measuring system of the MAGNATEST D sensor consists of two electromagnetic coils. 
Applying a high frequency alternating current to the transmitting coil creates a primary field that 
induces eddy currents on the material. The secondary field generated by these eddy currents is then 
measured by the sensor's receiving coil and the data generated is represented as the amplitude (X-
value) and phase shift (Y-value) between the transmitted and received signals. The sensor is used 
with an high frequency coil and can measure with excitation frequencies from 2 Hz to 128 kHz 
and it offers the flexibility to evaluate the measurements using higher harmonics [25]. This results 
in 48 features that are obtained for each measuring point, i.e. for each metal strip in the experiment. 
In Figure 3, two measurements with different frequencies are presented. The figure indicates the 
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presence of collinearity in the dataset by showing exemplary that individual features are highly 
correlated.  

Fig. 3. Two different normalised EC measurements. 
The height and width of the measured tears in the fine-blanked parts exhibit considerable 

variance throughout the dataset, as illustrated in Figure 4. This variability can be partly attributed 
to the inherent fluctuations of the manual measuring system. The standard deviation of nine 
measurements of one identical part is 13 μm for the height and 12 μm for the width of the tear of 
the part. The three parts with the highest and lowest values are highlighted in red for the evaluation 
in Section 4. 

Fig. 4. Width (a) and height (b) of the tears for every measured part. 
While the height displays a subtle drift across the coil length (part number), the width exhibits 

a discernible drift over the same coil length. In summary, the dataset consists of 245 data points 
for which there are 48 features (EC data) and two labels (quality data). 
Methodology for the data analysis  
To model the relationship between the EC data and the quality data linear regression is chosen. 
This choice is motivated by the model's high interpretability, facilitated by the availability of 
various statistical methods for example methods designed for testing assumptions or diagnostic 
methods for the model fit. Moreover, linear regression allows for the inclusion or exclusion of 
features based on their significance and contribution to the model. To evaluate the goodness of the 
fit of the linear model, it must be ensured that there is no collinearity, no overfitting, linearity 
between the features and labels, no correlation of error terms, constant variance of error terms and 
no outliers [26].   

Because of the collinearity in the EC data, where multiple features display significant 
correlation, there is a risk of overfitting, leading to an increase in the standard error. Consequently, 
a forward feature selection method is employed, leveraging the Akaike information criterion (AIC) 
as the evaluation metric. The forward feature selection with AIC starts with the null model, i.e. the 
model that contains only the intercept, and then iteratively adds the feature that generates the model 
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with the smallest AIC [27]. The smallest AIC leads to the model with the best model fit compared 
to the true model fit, while also giving penalties for overfitting. The AIC is calculated as follows: 

AIC = 2p − 2 ln�L��, (1) 

where L� is the maximum of the likelihood function and p the number of features [28]. The feature 
selection is used to reduce overfitting and the selected features are less correlated than the total 
features of the dataset. Furthermore, this method directly identifies features with the most 
substantial impact on label. 

To evaluate the performance and generalization of the linear regression model a k-fold cross-
validation is used. Therefore, the dataset is randomly divided into k equal-sized subsets. Each 
subset is then used as test dataset and the rest of the data is used as a training dataset for the linear 
regression. Then the mean of the mean-squared error (MSE) and the mean of the coefficient of 
determination (R2) of all linear regressions is computed. If the training and test errors, along with 
the coefficient of determinations, exhibit similar size, it indicates that the model can be generalized 
effectively, and there is no apparent issue with overfitting [27]. 

Residual plots can assess the relationship between the features and the label and whether the 
error terms do not correlate and have a constant variance. Ideally, a residual plot should not reveal 
any discernible pattern that would suggest a violation of these conditions [26]. To analyze outliers 
and data points with high influence the Cook’s distance and the studentized residual can be 
calculated as well. The Cook’s distance gives an estimate of the influence of a datapoint by 
evaluating how much the regression model changes when the datapoint is removed [28]. The 
studentized residual can be computed by dividing each residual by its estimated standard error. 
Data points with a studentized residual greater than 3 in absolute value are potential outliers [26].  

Once it has been ensured that the model has approximated the data well, the F-test can be carried 
out. The F-test is a hypothesis test used to test whether there is a relationship between the features 
and the label of a linear regression. The null hypothesis is that all regression coefficients (except 
the intercept) are equal to zero, indicating that the features do not significantly contribute to 
explaining the variance in the label. It is tested against the hypothesis that at least one regression 
coefficient is non-zero. The F-statistic is calculated as follows: 

F = (TSS−RSS)∕p
RSS∕(n−p−1) , TSS = ∑(yi − y�)2, RSS = ∑(yi − y�i)2, (2) 

where 𝑦𝑦𝑖𝑖 is the true value, 𝑦𝑦�𝑖𝑖 is the fitted value, 𝑦𝑦� the mean of the label, 𝑛𝑛 number of data point 
and 𝑝𝑝 the number of features. From the F-statistic a p-value can be deduced and if this p-value is 
smaller than a selected significance level (e.g. 0.01) the null hypothesis can be rejected, and it can 
be concluded that the features contain relevant information about the label [26].  
Results and discussion 
To answer the research questions linear regressions were fitted with the EC data as features and 
the height and the width of the tears of the selected tip of the fine blanked part as labels. Moreover, 
to analyze the impact of different frequencies and different harmonics a feature selection was 
performed. Initially, a 5-fold cross-validation with a linear regression model fitted on the entire 
dataset showed that even the linear regression is not generalizable on this dataset (see Table 3a). 
Considering the high collinearity of the dataset, this result was to be expected. Thus, the feature 
selection approach presented in Section 4 was implemented and the linear model fitted on the 
selected features exhibited less overfitting in the cross-validation (see Table 3b).  
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The MSE is still quite high and the R2 quite low, but considering the high variance in the labels, 
it is coherent with the dataset. Note that the R2 values of the model of all features and the model 
with the selected features cannot be compared since R2 is influenced by the number of features.  

Table 3. Results of the cross-validation on all features (a) and on the selected features (b). 
 a) Cross-Validation on all 

features 
b) Cross-Validation on selected 

features 
Height Width Height Width 

𝑴𝑴𝑴𝑴𝑴𝑴 Train 3,642 8,472 4,631 11,296 
𝑴𝑴𝑴𝑴𝑴𝑴 Test 6,340 15,750 4,997 12,142 
𝑹𝑹𝟐𝟐 Train 0.46 0.69 0.32 0.58 
𝑹𝑹𝟐𝟐 Test 0 0.34 0.22 0.51 

The selected features are shown in Table 4, here, “harmonic” is abbreviated by “h.”. Apart from 
the 8192 Hz 5th harmonic Y feature (phase shift of the 5th harmonic for the excitation frequency 
8192Hz), the selected features of both labels have no overlaps. In addition, no frequency spectrum 
is particularly emphasized. However, it is noticeable that the 3rd and 5th harmonic were selected 
very frequently. Since the harmonics show the permeability of the material this suggests that the 
permeability has a stronger influence on the formation of tears and this again confirms the 
influence of the microstructure on the formation of tears, as the microstructure has a strong 
influence on the permeability of the material [25].   

Table 4. Selected features of forward feature selection. 
Label Selected features 
Height  8192 Hz 5th h. Y, 4096 Hz 5th h. X, 256 Hz X, 256 Hz 3rd h. X, 32 Hz Y  
Width 8192 Hz 3rd h. X, 8192 Hz 5th h. Y, 2048 Hz Y, 2048 Hz 3rd h. X, 1024 Hz 3rd h. X, 

512 Hz 3rd h. X and Y, 512 Hz Y, 256 Hz 3rd h. Y, 128 Hz Y  
Fig. 5 shows the analysis of the model fit with the label height of the tear. The read line in the 

residual plot shows the smoothed curve for the residuals. The plot where the true values are plotted 
against the fitted values of the model highlights challenges in accurately predicting values with 
both low and high heights. This can be also seen in the residual plots and in the Cook’s distance 
since the highlighted data points have all very low or high height (cf. Fig. 4). The studentized 
residuals reveal data point (part) 110 and 165 as outliers, since these data points have an absolute 
studentized residual bigger than three. Thus, it might be that the EC data cannot predict tears with 
very high height. However, overall, the Cook’s distance is considerably smaller than 1 and the 
residual plots show no pattern, hence the model fit is valid. 

In general, the fit of the model for the label width of tears is better than the fit for the height (cf. 
Fig. 6). Here again, the datapoints considered to be outliers are parts which have a low or a high 
tear width (cf. Fig. 4), nevertheless, it can again be concluded that the model fit is valid. Since both 
linear regressions have a good fit on the dataset, the F-test could be conducted (cf. Table 5).  

Table 5. Results of the F-test. 
 Height Width 
F-statistic 22.04 32.46 
p-value (F-statistic) 3.80e − 18 6.05e − 39 

Because the p-value of the F-test is considerably small, the result is that the null hypothesis can 
be rejected, and it can be concluded that the EC data contains valuable information about the 
tearing of the fine blanked parts.  
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Fig. 5. Analysis of the model fit with the label height with different diagnostic plots. 

Fig. 6. Analysis of the model fit with the label width with different diagnostic plots. 
Conclusion and outlook 
In this paper, a forward feature selection and linear regression was used to investigate the influence 
of the material represented by eddy current data on the quality of fine blanked part particularly the 
tearing behaviour of a selected tip. In an experiment, sheet metal strips were measured non-
destructively and a geometry analogue to gears was fine blanked. Subsequently the height and the 
width of the tear of a selected tip of the resulting parts was evaluated. It was shown that eddy 
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current measurements along the coil contain information about the expected height and the width 
of the tear of the fine blanked part.  Furthermore, a forward feature selection analysis indicated 
that no particular frequency spectrum contains the relevant information. However, the frequent 
choice of harmonics implies that the material's permeability likely has a significant impact on the 
tearing process.  

As a next step, experiments are conducted in which the die clearance is designed for the 
thickness of the material but material with higher carbon is selected potentially resulting in tear-
free parts and torn parts. The overall goal of this approach is to implement a control strategy in 
which the eddy current signals are evaluated by a model which analyses the tearing. Since tearing 
can be potentially prevented by an increased vee-ring force, which in turn accelerates wear, the 
model will adapt the vee-ring force based on the eddy current signals only if required.  
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