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Abstract. The development of more sophisticated constitutive models is essential for improving 
the reliability of metal forming process simulations. The main objective of this work is to employ 
a Gurson-type [1] porous criterion to assess the ductile damage distribution of a strongly textured 
AA5042-H2 sheet during a single-stage cup-drawing process. The anisotropy of the dense phase 
is described with the non-quadratic form of the CPB06ex2 [2] criterion using two linear 
transformations. In line with Gurson’s homogenization theory, the plastic behavior of the porous 
solid is described by an approximate macroscopic strain-rate potential (SRP) using the classical 
Rice and Tracey trial fields. The particularity of this implementation is that the macroscopic 
potentials are not evaluated via analytical functions, but by numerical integration of the local fields 
[3]. It is shown that such approach is viable from the computational standpoint and opens the door 
for materials with intricate plastic behavior to be modeled within the framework of porous media. 
Introduction 
Traditionally, constitutive models are represented by closed-form expressions for two primary 
reasons: first, to minimize computational costs, and second, to facilitate their integration into 
numerical simulation schemes such as the Finite Element Method (FEM). Regrettably, due to 
inherent mathematical constraints, obtaining closed-form expressions in the context of porous 
media may require the incorporation of one or more simplifying hypotheses, often accompanied 
with detrimental modelling effects (e.g. the Cauchy-Schwartz inequality), or may even be 
unattainable. Opportunely, recent strides in the computational power-to-cost ratio have facilitated 
the adoption of a fully numerical approach to constitutive modelling. Such approach, by design, 
circumvents the challenges associated with obtaining closed-form expressions and presently allow 
for numerical simulations to be conducted within reasonable computational timeframes. Based on 
this notion, Brito [3] recently proposed a numerical integration scheme for evaluating the stress- 
and strain-rate- plastic potentials for ductile porous solids containing randomly distributed 
spherical voids whose matrix behaviour is described by the non-quadratic orthotropic stress 
potential of Plunkett et al. [2]. The goal of this paper is to apply the latter formulation to evaluate 
the ductile damage distribution of a strongly textured AA5042-H2 sheet during a single-stage 
cylindrical cup-drawing process. Indeed, given its industrial significance and geometric simplicity, 
the cylindrical cup-drawing process stands out as one of the most frequently employed benchmarks 
for evaluating the performance of constitutive criteria. The manifestation of plastic anisotropy 
gives rise to earing phenomena, characterized by the undulation of the top edge of the fully drawn 
cup. The extent of texture in the material can dictate the occurrence of four, six, or more ears 
resulting from the drawing process. The application example adopted in this work is based on the 
experimental results of Yoon et al. [4], which reported a cup with eight ears. Moreover, these 
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authors employed the Plunkett et al. [2] criterion with two transformations (CPB06ex2) to simulate 
the forming process and found that the model predicted a similar earing profile. While the 
geometry of the completely drawn cup can be assessed with such formulation (valid for dense, 
plastic isochoric, materials), no conclusion can be drawn regarding the damage distribution in the 
component. This problem is now readdressed within the scope of porous media, for which the 
porosity distribution quantifies the damage state. It is shown that the numerical homogenization 
scheme is, indeed, feasible from the computational perspective and is a promising tool for 
evaluating the damage state of anisotropic ductile metals and alloys. 

The general scheme of notation is as follows. Scalars and scalar-valued functions are denoted 
with light-face letters, e.g. ( ;, , )A b …  vectors with under bar italic Latin and Greek bold-face letters, 
e.g. ( , ,…);A b  second-order tensors or tensor-valued functions with italic Latin and Greek bold-
face letters ( , ,…);A b  fourth-order tensors with calligraphic majuscules, e.g. ( , ,...).A B  The 
corresponding pseudo-vectorial and matrix Voigt notation are represented with upright Latin bold-
face letters ( , ,…).A b  The double-contracted tensor products is defined as : ,ij ijA B=A B  and
( : ) .ij ijkl klA= CC A  The summation convention over repeated indices is employed. 

Plasticity model 
The employed macroscopic strain-rate potential results from the kinematic Hill-Mandel homogeni-
zation framework considering: (i) an hollow sphere of domain Ω, with outer radius ,B  containing 
a concentric spherical void of radius A  occupying a domain ω; (ii) the (kinematically admissible) 
Rice and Tracey [5] velocity fields; and (iii) the microscale (alias local) plasticity model governed 
by the yield criterion, ( ),f σ  of Plunkett et al. [2], i.e.: 
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where ex 1n ≥  is the number of orthotropic transformations, a  is the the homogeneity degree, T
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are the eigenvalues of the n-th transformed stress tensor, ( ) ( )ˆ : ,n n= Ls s  ( ) ( ) :n n=L C K  is the n-th 
fourth-order deviatoric transformation tensor, and ( )nC  is a major-symmetric orthotropic tensor 
whose Voigt 6x6-matrix notation, ( ) ( )C ,n n
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1/2( ) 1/3( ),ijkl ik ijl l jk ij klδ δ δ δ δ δ= + −K  , , , 1, 2,3,i j k l =  is the isotropic fourth-order deviatoric unit 
tensor and ijδ  is the Kronecker delta. In Eq. 1, ( )nk  is the tension-compression asymmetry 
parameter associated with the transformation n, and m is a material constant defined such that 

( )ϕ σ  reduces T
1σ  for uniaxial tensile loadings and it is given in terms of ( )nL and ( )nk  as: 
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where ( )n
iΦ , 1, 2,3i =  are the components (n)

11,iiL  1, 2,3i =  (no sum), respectively, (or, equivalently, 
the non-zero components of the first column of the 6x6-matrix form representation of (n) ).L  
Convexity is guaranteed for any integer 1a ≥  and for ( ) [ 1,1]nk ∈ −  (for the proof refer to [6]). In 
Eq. 1, ( ) ,ϕ σ≡σ  is the stress potential (i.e. equivalent stress measure). Under associated plasticity 
conditions, it is possible to show (see [3]) that it exists a dual (alias conjugated or polar reciprocate) 
potential of ( ) ,ϕ σ≡σ  also convex, known as the strain-rate potential (SRP), p T

1( ) ,ψ λ≡ d  such 
that the dissipation function reads p( ) =D d p: =σ d p T T

1 1( ) ( ) ,ϕ ψ σ λ= σ d  where the scalar T
1λ  is 

the equivalent plastic strain rate associated with the adopted equivalent stress measure, i.e. the 
uniaxial tensile stress, σ  is the Cauchy stress tensor and pd  its work-conjugate, i.e., the Eulerian 
plastic strain-rate tensor. 

The approximate1 macroscopic SRP, ( ),Ψ D  associated with the imposed macroscopic strain 
rate tensor, Ω〉= 〈D d , and the Rice and Tracey [5] microscale trial strain-rate field, RT ( ) =d x '+D

3
m ( / ) ( 2 ),r rD b r θ θ φ φ− ⊗ + ⊗ + ⊗e e e e e e  (where 'D  and mD  represent the deviatoric and the 

hydrostatic part of D, and ( , , )r θ φe e e  is the orthonormal base of the spherical ( , , )r θ φ  coordinate 
system), is defined as: 
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where the notations V〈⋅〉  and ( )S r〈⋅〉  stand for volume averaging over the volume V, and over the 
surface 3

2( ) { : || || },S r r= ∈ =x x  respectively, with ( )S r  denoting the spherical surface of radius 
r and area 2( ) 4 .A r rπ=  The above integral is determined numerically by the cubature procedure 
proposed in Brito [3]. Moreover, one can define its dual, the macroscopic stress potential, ( ),Φ Σ  
by applying the normality principle at the macroscale: 
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where scalar Λ  is the macroscopic plastic multiplier rate and Σ  is the macroscopic Cauchy stress. 
The criterion in Eq. 4 is implemented in an academic FE research code (DD3IMP, University of 
Coimbra, e.g. [7]–[9]) considering a large-strain elastoplastic constitutive framework grounded on 
an hyperelastic-based elastic-plastic multiplicative split formulation and based on the strain-rate 
potential flow rule (i.e. right member of Eq. 5) to describe the plastic dissipation (see also [3] for 
details). Given the adopted numerical approach to the homogenization problem, the model 
presented above is coined the Computational Homogenization Model (CHM). 
 

 
1 Approximate in the sense that a single trial velocity field, tr tr ( , ),=d d x D \ ,ω∀ ∈Ωx  compatible with 
uniform strain-rate boundary conditions of the type ( ) ,rB= =v x e Dx  is employed, where x is the position 
vector in the Representative Volume Element and \ωΩ  denotes the domain of the matrix phase. 
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Finite element model 
The finite element (FE) simulation of the cup-drawing test is based on the work of Yoon et al. [4]. 
Both the process parameters and the constitutive identification of the yield behaviour of the 
AA5042-H2 matrix are extracted from the cited paper. A schematic view of the cylindrical cup 
drawing setup is shown in Fig. 1. The process parameters and the dimensions of the tools are given 
in Table 1. Given the geometric and orthotropic symmetry conditions of the cup drawing process, 
the analysis is confined to one quarter of the model. The adopted FE mesh is shown in Fig. 2. The 
structured zone is discretized with a 30×28 (radial × circumferential) partition in the plane of the 
sheet and two layers along the thickness direction are used. The FE mesh consists of a total of 
1896 eight-node hexahedral FE with a selective reduced integration (SRI) technique. The tools are 
modelled as rigid bodies and the friction between the sheet and the tools is assumed constant and 
characterized by Coulomb's law with a friction coefficient 0.008µ =  (after [4]). 

The matrix plastic behaviour is caracterized with the non-quadratic form of CPB06ex2 [2] yield 
criterion (i.e. using two ortotropic transformations); and its elastic behaviour is assumed isotropic 
and constant, as the degradation of the elastic modulus is neglected. The isotropic hardening of the 
matrix is described by a Voce-type law: 

p
Y Mp

Voce 0 sat 0M( ) ( )(1 ),CY Y Y Y e−= + − − òò  where VoceY  is the 
yield stress, p

Mò  is the matrix equivalent plastic strain and 0 sat Y{ , , }Y Y C  are the Voce parameters. 
Strain-controlled nucleation is considered via Chu and Needleman’s [10] normal distribution, yet 
stress-controlled nucleation is neglected. Table 2 summarizes the material model parameters. 

Fig. 3 represents cross sections of the macroscopic SRP (Eq. 4) and the respective conjugate, 
the macroscopic yield surface, in the principal space with varying hydrostatic levels. Note that the 
shape of the sections changes drastically along the hydrostatic axis. Initially departing from a shape 
reminiscent to that of the dense phase, the sections progressively evolve towards a more smooth, 
rounded form (i.e. approaching isotropy) near the poles. Closed-form analytical criteria for porous 
solids are unable to capture such evolving shape behaviour as the underlying shape in the purely 
deviatoric plane is maintained throughout the hydrostatic axis. Moreover, it is worth noting that 
the positions of the extreme hydrostatic values are not on the hydrostatic axis. This is a result of 
the anisotropy alone (indeed, tension-compression asymmetry is assumed null for this matrix 
alloy) and renders the potentials remarkably asymmetrical with respect to the purely deviatoric 
plane (these are, however, symmetric with respect to the origin, since tension-compression 
asymmetry is neglected and thus the governing microscale criteria are even functions). 

 
Figure 1. Schematic representation of a cylindrical cup drawing process (adapted from [11]). 
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Table 1. Process parameters and the dimensions of the tools (after [4]). 

Parameter  Value  
Blank diameter bD  76.07 [mm] 
Die opening diameter dD  46.74 [mm] 
Punch diameter pD  45.72 [mm] 
Die profile radius dr  2.28 [mm] 
Punch profile radius pr  2.28 [mm] 
Initial blank thickness 0t  0.274 [mm] 
Punch stroke pu  22.75 [mm] 
Blank-holder force (total) bhf  10.0 [kN] 

 
 

 

 

Structured mesh 
 

Unstructured mesh 
  

Figure 2. FE mesh of the blank in the reference configuration. Two through-thickness layers are 
used. 

 

 Strain-rate potential (SRP)   Stress potential (SP)   

 

 

 

 

 

 

 

 (a)   (b)   
Figure 3. π-plane representation of macroscopic: (a) strain-rate potential (Eq. 4); and (b) stress 

potential; unitary isovalue surfaces in their respective principal space for a porous solid with 
porosity 0 0.001,f =  with a AA5042-H2 alloy matrix. Cross sections with varying hydrostatic 

fraction, m( ) ,f ⋅  with respect to the tensile and compressive hydrostatic extreme values are plotted. 
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Table 2. Material coefficients for the AA5042-H2 alloy (partially after [4]). 

Elasticity (isotropic)      

 
Young modulus [GPa]  Poisson ratio [-]    

E   υ       
68.9  0.33      

Plasticity: matrix behaviour    

 
CPB06ex2 parameters ( 10)a =      

(1)k   (1)
11C  (1)

12C  (1)
13C  (1)

22C  (1)
23C  (1)

33C  (1)
44C  (1)

55C  (1)
66C   

0.0  1.0 -0.0272 -0.6011 1.2870 0.6864 -0.2736 1.0 1.0 1.1514  

 
(2)k   (2)

11C  (2)
12C  (2)

13C  (2)
22C  (2)

23C  (2)
33C  (2)

44C  (2)
55C  (2)

66C   
0.0  1.0 -0.0897 0.0112 1.1322 -0.1092 -1.2009 1.0 1.0 1.3093  

 Isotropic hardening  
 

 
Voce law    

 0Y  [MPa] satY  [MPa] YC [-]      
 267.80 375.08 17.859      

Porosity        

 
Initial porosity  Critical porosity  Strain-controlled nucleation    

0f   Cf   Nf  Nò  Ns     
0.001  0.1  0.01 0.3 0.1    

 
Results and discussion 
The simulation of the cup drawing test is performed for three SRP plasticity models: (i) the dense 
model (the dual of the CPB06ex2 criterion in Eq. 1); (ii) the Gurson [1] (isotropic) porous criterion; 
and (iii) the CHM described in Eq. 4. All simulations were executed on a computer equipped with 
an Intel® Core™ i7-8700K (6C/12T) CPU on a 64-bit Windows 10 Pro for Workstations operating 
system. Table 3 summarizes the computational performance of the numerical simulations for each 
material model. Fig. 4 depicts the predicted geometry of the completely drawn cup using the CHM. 
This model predicts the occurrence of eight ears of varying height, which agrees with experimental 
data, as shown in Fig 5. Fig. 5 also shows that a comparable earing height trend is captured using 
the CPB06ex2 (dense) criterion, yet, quantitatively, the latter model predicts higher earing profile. 
This is thought to result from the restrictive condition of plastic incompressibility in the CPB06ex2 
model, which facilitates the elongation of the sheet in the blank holder zone. 

 
Table 3. Computational performance measurements of the cup drawing test simulations for the 
three plasticity models: the dense model (CPB06ex2, Eq. 1); the Gurson (1977) model; and the 

computational homogenization model (CHM, Eq. 4) 
   Dense Gurson CHM 

No. of increments   129 121 124 

Computational time 
Absolute [h]  2.73 0.18 46.97 

Relative  1.0 0.066 20.42 
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  Λ    3 ( 10 )f −×  

  

               

0.6583 
0.5851 
0.5120 
0.4388 
0.3657 
0.2925 
0.2194 
0.1462 
0.0731 
0 

 

 
 

               

6.3936 
5.7586 
5.1242 
4.4894 
3.8547 
3.2200 
2.5853 
1.9505 
1.3158 
0.6811 

 

 (a)   (b)  
Figure 4. Completely drawn cup. Isocontours of the: (a) accumulated equivalent plastic strain, 

;dtΛ = ∫Λ  and (b) the porosity, f, using the computational homogenization model (CHM, Eq. 4). 

 
Figure 5. FE results of the earing profile of the completely drawn cup using: the dense model 
(CPB06ex2, Eq. 1); the Gurson (1977) model; and the computational homogenization model 

(CHM, Eq. 4). Comparison with experimental data (after [4]). 

 
Figure 6. FE results of the punch force-displacement curves using: the dense model (CPB06ex2, 
Eq. 1); the Gurson (1977) model; and the computational homogenization model (CHM, Eq. 4). 

The punch force-displacement evolution as predicted by each model is represented in Fig. 6, 
including the detail for the instance the blank lost contact with the blank-holder. The criteria that 
consider matrix orthotropy (CPB06ex2 and the CHM) predict virtually the same result, whereas 
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the curve associated with Gurson’s isotropic model appears to be a lower bound estimate 
throughout the entire drawing process. Unfortunately, no experimental data is available to assess 
the quality of these predictions. 
Conclusions 
In this work, a numerical approach to the Gurson-type homogenization problem was employed to 
describe the damage state of a highly textured alloy whose orthotropy is modelled based on a non-
quadratic yield function with multiple linear transformations. In contrast with existing closed-form 
ad hoc criteria, the employed formulation accounts for the micro-macro plasticity coupling as 
accurately as allowed by the scale transition operations (Hill-Mandel lemma and limit analysis 
theory). The primary drawback lies in the higher computational cost incurred with the utilization 
of cubature methods for the assessment of volume integrals. Nonetheless, it is shown that this cost 
is not prohibitively expensive. Moreover, a surge in the number of cores of new chips is due in 
next few years driven by the demands of emerging technologies such as artificial intelligence (AI) 
and virtual reality (VR), hence the heightened computational effort associated with the employed 
numerical homogenization scheme is expected to be mitigated by the rapid advancements in 
microprocessor performance and parallelism within a short timeframe. 
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