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Abstract. This study proposes a formulation equivalent to J2 plasticity with the associated flow 
rule to simulate the elastoplastic behavior of materials with isotropic or kinematic hardening in a 
peridynamic framework.  The capabilities of the developed formulation are analysed through 2D 
and 3D case studies whose results (displacement and stress field) are compared with those obtained 
from the corresponding FEM models. 
Introduction 
The evaluation of the structural residual life of aerospace structures requires the ability to predict 
damage propagation. In recent years, Peridynamics (PD) [1], a new non-local continuum theory, 
attracted the attention of many researchers for its capability to simulate crack initiation, 
propagation and interaction. The theory has been widely used to model crack propagation in brittle 
materials, while the analysis of elastoplastic materials [2] has been mainly limited to the perfectly 
elastoplastic behavior [3,4]. Unfortunately, in the case of metals, experimental observations reveal 
a complex plastic behavior, which requires models with isotropic and kinematic hardening [2]. A 
PD constitutive model for 2D elastoplasticity with isotropic hardening is presented in [6] and 
extended to the 3D case in [7]. In this paper, an elastoplastic formulation equivalent to J2 plasticity 
is presented with which it is possible to simulate the elastoplastic behavior in the case of both 
isotropic and kinematic hardening.  
Formulation 
The PD equation of motion, for the static case, is [1]: 

∫ (𝑇𝑇[𝒙𝒙]〈𝒙𝒙′ − 𝒙𝒙〉 − 𝑇𝑇[𝒙𝒙′]〈𝒙𝒙 − 𝒙𝒙′〉)𝑑𝑑𝑉𝑉𝒙𝒙′ℋ + 𝒃𝒃(𝒙𝒙) = 0 (1) 

where 𝒃𝒃(𝒙𝒙) is the body force on the material point 𝒙𝒙, 𝑇𝑇[𝒙𝒙] is the force state on the material point 
𝒙𝒙 corresponding to the bond vector 𝒙𝒙′ − 𝒙𝒙 and ℋ represents the neighborhood of 𝒙𝒙 whose radius 
δ is the horizon, see Fig.1. The force vector state is a vector of modulus 𝑡𝑡 (the scalar force state) 
and direction coincident with the deformed configuration of the bond (ordinary state-based PD).  
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Figure 1: Positions of two interacting material points 𝒙𝒙 and 𝒙𝒙′; (a) initial and (b) deformed 

configuration. 
 

The extension of a bond (a scalar quantity) is 𝑒𝑒 = 𝑦𝑦 − 𝑥𝑥, where 𝑦𝑦 = |𝒚𝒚′ − 𝒚𝒚| and 𝑥𝑥 = |𝒙𝒙′ − 𝒙𝒙|. 
𝒙𝒙 is the position of the material point in the initial configuration while 𝒙𝒙′ denotes the generic point 
belonging to the neighborhood of 𝒙𝒙. While 𝒚𝒚 and 𝒚𝒚′ are, respectively, the positions of 𝒙𝒙 and 𝒙𝒙′ in 
the deformed configuration.  

In order to study problems involving elastoplastic behavior, it is necessary to distinguish 
between the isotropic and deviatoric component of the bond extension and of the scalar force state 
[1]. The extension of a bond is the sum of two components [1]: the isotropic and the deviatoric. 
Therefore, 𝑒𝑒 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑑𝑑, similarly for the scalar force state we have: 𝑡𝑡 = 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑑𝑑 . In [3,4] it is 
emphasized that 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 does not depend on 𝑒𝑒𝑑𝑑 and the extension component 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is only elastic. 
Whereas 𝑒𝑒𝑑𝑑 is itself the sum of two components, elastic and plastic respectively 𝑒𝑒𝑑𝑑 = 𝑒𝑒𝑑𝑑𝑑𝑑 + 𝑒𝑒𝑑𝑑𝑑𝑑. 
Finally, the deviatoric component of the scalar force state, in the case of materials with 
elastoplastic behavior, results in the 3D case, [4]: 

𝑡𝑡𝑑𝑑 = −5𝜇𝜇𝜇𝜇 𝜔𝜔𝑥𝑥
𝑚𝑚

+ 15𝜇𝜇
𝑚𝑚
𝜔𝜔(𝑒𝑒 − 𝑒𝑒𝑑𝑑𝑑𝑑) (3) 

Where µ is the shear modulus, θ is the dilatation, m is the weighted volume and 𝜔𝜔 is the 
influence function (see [1,4] for further details).  

Furthermore, on the basis of classical plasticity theory, the load-unload conditions in the Kuhn-
Tucker form and the consistency condition [2] must be fulfilled when solving elastoplastic 
problems. In the case of the peridynamic formulation [3] these conditions become: 

�
𝜆𝜆 ≥ 0, 𝑓𝑓�𝑡𝑡𝑑𝑑� ≤ 0,    𝜆𝜆𝜆𝜆�𝑡𝑡𝑑𝑑� = 0

𝜆𝜆𝑓𝑓̇�𝑡𝑡𝑑𝑑� = 0     
 (4) 

where 𝑓𝑓 is the yield function and 𝜆𝜆 is the continuum consistency parameter; while the plastic flow 
rule is [3]: 

𝑒̇𝑒𝑑𝑑𝑑𝑑 = 𝜆𝜆∇𝑑𝑑𝜓𝜓�𝑡𝑡𝑑𝑑� (5) 

in which ∇𝑑𝑑𝜓𝜓�𝑡𝑡𝑑𝑑� is the constrained Fréchet derivative of 𝜓𝜓�𝑡𝑡𝑑𝑑� defined hereafter.  
 
In [3,4] based on the formulation introduced in [1] the following equation for the yield function 

for materials with perfectly plastic behavior is proposed: 
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𝑓𝑓�𝑡𝑡𝑑𝑑� = 𝜓𝜓�𝑡𝑡𝑑𝑑� − 𝜓𝜓0 = �𝑡𝑡𝑑𝑑�
2

2
− 𝜓𝜓0 (6) 

where �𝑡𝑡𝑑𝑑�
2

= ∫ (𝑡𝑡𝑑𝑑)2𝑑𝑑𝑉𝑉𝑥𝑥′ℋ  and 𝜓𝜓0 = 25𝜎𝜎𝑌𝑌2 8𝜋𝜋𝛿𝛿5⁄  in which 𝜎𝜎𝑌𝑌 is the material's yield stress. 
Eq.6 is equivalent to the yield function 𝑓𝑓 = 𝜎𝜎vM − 𝜎𝜎𝑌𝑌 used in classical mechanics [2] where 𝜎𝜎vM 
is the von Mises stress. 

 
The proposed formulation to study the behavior of materials with isotropic and kinematic 

hardening, was inspired by the corresponding yield function used in classical mechanics [2] 

𝑓𝑓 = |𝜎𝜎vM − 𝑞𝑞| − (𝜎𝜎𝑌𝑌 + 𝐾𝐾𝐾𝐾) (7) 

In this equation, 𝐾𝐾 is the isotropic hardening modulus, 𝑞𝑞 is the back stress resulting from the 
kinematic hardening, and α is the internal hardening variable. 𝑞𝑞 and α, initially zero, vary according 
to the following equations [2]: 

𝑞̇𝑞 = 𝜀𝜀𝑝̇𝑝𝐻𝐻    and    𝛼̇𝛼 = sign(𝜎𝜎𝑉𝑉𝑉𝑉 − 𝑞𝑞)𝜀𝜀𝑝̇𝑝  (8) 

Where 𝐻𝐻 is the kinematic hardening modulus and 𝜀𝜀𝑝𝑝 is the equivalent plastic strain. Rewriting 
Eq. 7 in the context of the peridynamic formulation (for details see [5]) one obtains an equation 
analogous to Eq.6 in which, however, 𝜓𝜓0 is no longer a constant and depends on the load increment 
at the material point considered. Therefore 𝜓𝜓0 becomes: 

𝜓𝜓0(𝒙𝒙, 𝑡𝑡) = 25[𝜎𝜎𝑌𝑌+𝐾𝐾𝐾𝐾+sign(𝜎𝜎vM−𝑞𝑞)𝑞𝑞]2

8𝜋𝜋𝛿𝛿5
 (9) 

In Eq.9, q and α are found using Eq.8 in which the equivalent plastic strain should be replaced 
with the corresponding quantity expressed in the peridynamic formulation, which is a function of 
the deviatoric plastic extension [6,7]. It is worth noting that Eq.9 is obtained by considering small 
displacements. 

The numerical implementation strategy of the proposed formulation involves discretizing the 
domain with a uniform grid of nodes. Then the non-linear static problem is solved using an 
incremental approach. Therefore, an iterative procedure using a return mapping algorithm was 
implemented for the determination of the deviatoric plastic extension and the various dependent 
quantities [5]. 
Numerical examples 
In the following examples E=200 (GPa), ν=0.3, ρ=8000 (kg/m3) and σy0=600 (MPa). The isotropic 
hardening modulus is K=20 (GPa), and the kinematic hardening modulus is H=20 (GPa). All cases 
were studied using the proposed PD formulation and classical FE simulations. 

The first case is a thin plate with a central hole (Fig.2a) in plane stress conditions, subjected to 
an imposed displacement (Fig.2b) applied in increments of 0.0125 (mm). 
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Figure 2: (a) Geometry and boundary conditions; (b) displacement loading in the x direction. 
 
In Fig. 3, the displacements in the x-direction calculated by PD and FE at the 20th load step 

(ux=0.25 mm) are compared. Good agreement can be observed between the results obtained from 
the two models.  

 
Figure 3: Displacement (m) in the x direction solved by: (a) FE, (b) PD. von Mises stress at 
point A vs loading displacement, (c) isotropic hardening case; (d) kinematic hardening case. 

 
Fig.3c-d compares the von Mises stress at point A (Fig.2a) for the entire load history for both 

the isotropic (Fig.3c) and kinematic (Fig.3d) hardening cases. Point A is located in the region of 
the body where plastic deformation develops. The agreement between the PD and FE results is 
good: in particular, the PD model correctly estimates the maximum expected stress values obtained 
with the FE model. Note that in Fig.3c-d positive von Mises stresses are associated with a tensile 
load and negative von Mises stresses with a compressive load. 

The second example studies a 3D structure whose dimensions, load and constraint conditions 
are shown in Fig.4. The material behavior is elastoplastic with isotropic hardening. The load cycle 
(imposed displacement) is similar to that shown in Fig.2b with a maximum displacement value of 
0.35 (mm). Fig.4 compares the results obtained with the PD and FE models in terms of both 
displacement (uy component) and von Mises stress in the xy plane containing the longitudinal axis 
of the specimen at the 20th load increment (at which the maximum displacement is applied). Good 
agreement is observed between the PD and FEM results despite the fact that no strategies were 
adopted to mitigate the surface effect in the PD model. 
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Figure 4: 3D example, a) main dimensions.  Displacement (m) in the y direction on plane xy 

computed by: (b) FE, (c) PD (uy = 3.5·10-4 m). Distribution of von Mises stress (Pa) on plane xy 
obtained by: (d) FE, (e) PD (uy = 3.5·10-4 m). 

Conclusions 
This study presents an extension of the elastoplastic model in Peridynamics capable of describing 
isotropic and kinematic hardening behavior. The proposed formulation is equivalent to J2 plasticity 
with associated flow rule. 2D and 3D cases were studied, and the comparison between the results 
of the PD models and the corresponding FE models highlighted the capabilities of the developed 
approach, which represents the necessary first step for the simulation of ductile fracture in a 
peridynamic framework. 
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