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Abstract. This research study presents a novel high-order accurate computational framework for 
thermal fluid-structure interaction problems. The framework is based on the use of block-
structured Cartesian grids where level set functions are employed to define both the fluid and the 
solid regions. This leads to a mesh that consists of a collection of standard d-dimensional 
rectangular elements and a relatively smaller number of irregular elements at the fluid-solid 
interface. The embedded boundaries are resolved with high-order accuracy thanks to the use of 
high-order accurate quadrature rules for implicitly-defined regions. The fluid is assumed 
compressible and governed by the inviscid Navier-Stokes equations, whilst the solid region obeys 
the equations of thermo-elasticity within the small-strain regime. Numerical examples are 
provided to assess the capability of the proposed approach. 
Introduction 
The interest in developing reliable, sustainable and reusable transportation systems that are capable 
of flying at Mach numbers ranging from 0 to 12 is continuously growing. It is well-known that, 
within such a wide flight regime, the aircraft structure must endure extreme conditions in terms of 
pressure and temperature loads. These loads induce a complex thermo-elastic interaction that is 
generally resolved via the aid of numerical methods as analytical solutions exist for very special 
combinations of boundary conditions and material properties. 

In the context of computational methods, the Finite Volume (FV) method is the industry-
standard numerical approach to fluid mechanics problems and is found in many open-source and 
commercial software libraries; on the other hand, thermo-mechanical problems are very often 
tackled by the Finite Element (FE) method. Both the FV and the FE methods are extremely robust 
and widely employed in science and engineering; however, their coupling may become involved 
and may represent the bottleneck for fluid-structure interaction simulations. 

Among the various alternatives to FV- or FE-based approaches, the discontinuous Galerkin 
(DG) method has proved a powerful numerical technique for both fluid- and solid-mechanics; see, 
e.g., [1], among several recent contributions. With respect to other techniques, DG-based 
formulations use spaces of discontinuous basis functions to approximate the solution fields; this 
naturally enables high-order accuracy with generally shaped mesh elements, block-structured mass 
matrices and massive parallelization. Additionally, as DG methods enforce both boundary and 
interface conditions in a weak sense, the coupling between different formulations for the same or 
for different sets of partial differential equations is significantly simplified. This includes the 
coupling between different DG formulations or between a DG formulation and a FVM scheme, 
see Ref.[2]. 

This study introduces a novel formulation for unsteady thermal fluid-structure interaction 
problems coupling a shock-capturing FV scheme and a high-order DG scheme. Numerical tests 
are presented for a thermo-elastic cylinder moving at supersonic speed in an inviscid gas. 
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Geometry representation and discretization 
The coupled thermal fluid-structure interaction problem involves the modeling of two regions 
consisting of a fluid domain and a solid domain. Here, the geometry is represented via a level set 
function 𝜑𝜑 defined in a rectangular domain ℛ ⊂ ℝ𝑑𝑑, such that the fluid domain 𝒟𝒟𝑔𝑔 and the solid 
domain 𝒟𝒟𝑠𝑠 are identified by the points belonging to ℛ where 𝜑𝜑 is negative and where 𝜑𝜑 is positive, 
respectively. It follows that the interface 𝒥𝒥 between the fluid and the solid domains is identified 
by {𝒙𝒙 ∈ ℛ ∶  𝜑𝜑(𝑥𝑥) = 0}. To illustrate, Fig.(1a) shows a level set function defining a circle in a square 
domain, whilst Fig.(1b) shows the corresponding fluid and solid regions. 

The fluid and the solid domains are eventually discretized. Here, we use the implicitly-defined 
mesh approach developed in Refs.[2,3,4], which is based on intersecting a structured grid with the 
zero-contour of the level set functions and allows resolving the curved boundaries with high-order 
accuracy. Fig.(1c) shows the implicitly defined mesh for the geometry shown in Fig.(1b); in the 
figure, the darker elements represent the extended elements that prevent the presence of overly 
small elements in the mesh. See Refs.[2,3,4] for further detail on this meshing strategy. 

 
Fig. 1: (a). Level set function defined in a two-dimensional square and (b) corresponding fluid 

and solid regions identified by the sign of the level set function. (c) Implicitly defined mesh. 
Fluid dynamics model 
The considered fluid is a compressible gas assumed to obey the Euler equations, which are 
expressed as the following conservation law: 

𝜕𝜕𝑼𝑼𝑔𝑔

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑭𝑭𝑘𝑘
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= 0, (1) 

where 𝑡𝑡 is time, 𝑥𝑥𝑘𝑘 is the k-th spatial component, and 𝑼𝑼𝑔𝑔 and 𝑭𝑭𝑘𝑘
𝑔𝑔 denote the (𝑑𝑑 + 2)-dimensional 

vectors of the conserved variables and the flux in the k-th direction, respectively; these are 
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where 𝜌𝜌𝑔𝑔 is the fluid density, 𝒗𝒗𝑔𝑔 ≡ �𝑣𝑣1
𝑔𝑔, … , 𝑣𝑣𝑑𝑑

𝑔𝑔�T is the gas velocity vector, 𝑒𝑒0 is the gas total energy 
and 𝑝𝑝 is the gas pressure. The governing equations are closed by the ideal-gas equation of state 
with ratio 𝛾𝛾 of specific heats. In Eq.(1) and in the remainder of the paper, Latin indices will take 
value in {1,…,d} and, when repeated, imply summation. 
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Thermo-mechanical model 
The thermo-mechanical model considered here is based on the theory of linear elasticity and 
Fourier’s law of heat conduction. In absence of external sources, it is possible to show that the 
governing equations of coupled, unsteady thermo-elasticity may be written as: 
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In Eq.(4), 𝒖𝒖𝑠𝑠 ≡ (𝑢𝑢1𝑠𝑠, … ,𝑢𝑢𝑑𝑑𝑠𝑠 )T is the solid displacement vector, 𝒗𝒗𝑠𝑠 ≡ (𝑣𝑣1𝑠𝑠, … , 𝑣𝑣𝑑𝑑𝑠𝑠)T is the solid 
velocity vector, 𝜗𝜗 ≡ 𝑇𝑇𝑠𝑠 − 𝑇𝑇0 represents the variation of the solid temperature field 𝑇𝑇𝑠𝑠 with respect 
to a reference temperature 𝑇𝑇0, 𝜌𝜌𝑠𝑠 and 𝑐𝑐𝑠𝑠 are the density and the heat capacity per unit volume, 
respectively, of the solid domain, 𝒄𝒄𝑘𝑘𝑘𝑘 is a 𝑑𝑑 × 𝑑𝑑 matrix collecting subsets of elastic coefficients, 
see, e.g., Refs.[5], 𝜅𝜅𝑘𝑘𝑘𝑘 is the 𝑘𝑘𝑘𝑘-th entry of thermal conductivity tensor, 𝒎𝒎𝑘𝑘 is the 𝑑𝑑-dimensional 
vector containing components of the thermo-elasticity tensor, and 𝐈𝐈𝑑𝑑 is the 𝑑𝑑 × 𝑑𝑑 identity matrix. 
It is noted that the thermo-elastic properties of the solid are assumed temperature independent. 
Thermal fluid-structure coupling 
The coupling between the gas region and the solid region occurs at the interface between the two 
domains, i.e. at 𝒥𝒥 shown in Fig.(1b). Recalling that the solid is assumed to undergo small 
deformations, its interface with the gas do not change with time and, as such, behaves like a fixed 
wall for the gas dynamics equations. Additionally, as the gas is assumed inviscid and non-
conducting, its temperature 𝑇𝑇𝑔𝑔 is determined by the equation of state. 

The thermal fluid-structure coupling problem is then solved as follows: the conserved variables 
of Eq.(1) are updated from the time instant 𝑡𝑡 to the time instant 𝑡𝑡 + d𝑡𝑡 using an explicit time-
integration algorithm; then, at the time 𝑡𝑡 + d𝑡𝑡, the computed values of the gas pressure and 
temperature provide the required boundary conditions at the gas-solid interface to solve the 
unsteady thermo-elastic problem. 
Discontinuous Galerkin formulation 
The governing equations of the gas domain, i.e. Eq.(1), are numerically solved via the time-explicit 
Runge-Kutta discontinuous Galerkin formulation coupled to a shock-capturing second-order FV 
scheme [2,4]. On the other hand, the equations governing the thermo-elastic solid are solved by 
extending the DG formulation for elliptic PDEs developed in Refs.[5] with suitably-defined terms 
accounting for the temporal derivatives in Eq.(3). See Ref.[6] for further detail. 
Results 
Numerical results are presented for a cylinder with radius 𝒓𝒓 = 𝟎𝟎.𝟐𝟐 m moving at a Mach number 
𝐌𝐌∞ = 𝟐𝟐 at an altitude 𝒉𝒉 = 𝟏𝟏𝟏𝟏 km; the geometry and the boundary conditions of the problem are 
sketched in Fig.(2a). The final time of simulation is 𝑰𝑰𝒕𝒕 = 𝟑𝟑 ms. The gas is assumed perfect with 
𝜸𝜸 = 𝟏𝟏.𝟒𝟒, while the solid is assumed isotropic with properties: density 2700 kg/m3, Young’s 



Aeronautics and Astronautics - AIDAA XXVII International Congress Materials Research Forum LLC 
Materials Research Proceedings 37 (2023) 202-205  https://doi.org/10.21741/9781644902813-44 
 

 
205 

modulus 70 GPa, Poisson’s ratio 0.33, thermal conductivity coefficient 210 W/(m K), thermal 
expansion coefficient 𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟔𝟔 1/K and volumetric heat capacity 𝟐𝟐.𝟒𝟒𝟒𝟒 × 𝟏𝟏𝟏𝟏𝟔𝟔 J/(m3 K).  

 
Fig. 2: (a) Geometry and boundary conditions. (b) Mach number. (c) Temperature. (d) 

Displacement magnitude (the dashed line denotes the undeformed shape). 
Fig.(2b) shows the distribution of the Mach number, Fig.(2c) shows the temperature distribution 

within both the gas and the solid, while Fig.(2d) shows the displacement magnitude of the solid. 
The figures confirm the ability of the formulation to capture the shock wave, the thermal loads 
induced by the fluid flow and the deformation of the body. 
Conclusions 
A novel formulation for unsteady thermal fluid-structure interaction problems has been presented. 
The formulation uses a high-order accurate represented of embedded geometries, a shock-
capturing FV scheme to resolve flow discontinuities, and a high-order accurate DG scheme for the 
thermo-elastic problem. Numerical results have been presented for a thermo-elastic cylinder 
moving at M = 2 and have showed the capability of the proposed approach. 
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