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Abstract. In this paper, we simulate the nonlinear deployment mechanics of a modified flasher 
origami structure designed to be a deployable solar panel. We compare reduced-order bar-and-
hinge simulations, where panels are modelled as bar assemblies connected by joints and torsional 
springs, with results obtained from commercial finite element software. Through this comparison, 
we demonstrate the ability of the bar-and-hinge approach to capture key features of the origami 
behaviour at a fraction of the time needed to perform regular finite-element simulations. We also 
provide details on how to properly tune the bar properties to simulate panels made bonding printed 
circuit boards to textile, and the joint properties to mimic folds that are made of fabric and flexible 
circuit interconnects. 
Introduction 
In the past few decades, origami structures have attracted significant attention in the field of 
science and engineering, due to their unique mechanical properties and reconfigurable and 
tuneable attributes. These properties make origami designs suitable for applications in fields such 
as robotics, medicine, and especially aerospace. 

The task of modelling origami structures for space applications presents several challenges. 
First, modelling origami requires accounting for significant geometric nonlinearity due to the large 
rotations that the panels undergo during deployment and stowage. Additionally, real-life origami 
structures do not deploy following rigid body motions and are instead characterized by panel 
bending. Additional challenges appear when the origami systems to be modelled are made of 
multi-layer materials such as rigid-flex printed circuit boards (PCB). These materials are typically 
used in CubeSat applications, in which origami techniques are applied to deployable solar panels, 
communication devices and solar sails. Finally, origami simulations must yield information on the 
forces exerted by the deployment on the spacecraft. 

Research investigations on the deployment of origami structures have been conducted utilizing 
a variety of finite element software and techniques, including ABAQUS 5, formulations based on 
Hamilton’s equations to capture the dynamics of deployment with validation using ADAMS 
multibody dynamics [2], and quasi-static bar and hinge methods [3]. The fundamental principle of 
the bar-and-hinge approach, elucidated by Schenk and Guest [4] as well as Filipov et al. [5], centers 
on the simplification of the mechanics in origami, by replacing panels with assemblies of bars, 
hinges and torsional springs that limit out-of-plane rotations. This approach leverages the inherent 
limitations of permissible deformations within origami structures: in-plane stretching, out-of-plane 
folding along creases, and out-of-plane bending of panels. Bars are strategically positioned along 
straight fold lines and across panels to ensure in-plane stiffness. Rotational hinges are incorporated 
along the bars connecting panels to simulate crease folding, as well as along the bars traversing 
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panels to replicate panel bending. The method solves the equilibrium equations iteratively, using 
a displacement-controlled algorithm. Despite having a limited number of degrees of freedom, the 
reduced-order bar-and-hinge model accurately predicts the overall mechanical behaviour of 
origami structures [6]. 

Here, we use the bar-and-hinge method to simulate the deployment of a modified flasher 
origami for space applications and compare the results to shell FEM results from ANSYS Motion. 
Model generation workflow 
The selected folding pattern is a modified Flasher origami, which is renowned for its radial 
deployment mechanism and has been notably utilized in the design of the NASA Starshade 
prototype, for which the modification amounts to an octagonal variation of the folding technique. 
The geometry is initially designed in 2D and saved as .svg. A specific color convention is used to 
distinguish between mountain folds and valley folds, as illustrated in Figure 1 (left): mountain 
folds are red, valleys are blue and boundary edges are black. 

To simulate the deployment process, we need a closed version of this origami structure. This 
closed configuration is obtained using the interactive origami software (Origami simulator) by 
Ghassaei et al. [7]. The structure before and at a stage of partial folding are shown in Figure 1 
(center and right). 

 

 
Figure 1 – Origami pattern in .svg file (left), 3D open configuration (center) and 3D partially 
closed (right).  The image in the center and the one on the right have been rendered from the 

code in [7]. 
After obtaining the closed version of the origami structure, we export it as .obj file and import 

it in Merlin 2 (written in MATLAB) [2]. Prior to using it, the nodal coordinates from the .obj file 
are modified to better fit the desired geometry. The geometry of the origami structure is a 
10x10x10 centimeters cube. 

After importing the geometry, we set boundary conditions and loads. The only boundary 
condition imposed on the model is a complete translational block along the three axes to the central 
node of the horizontal panel. The loads are represented by four displacement constraints of 385 
millimeters imposed on the top four vertices of the outermost panels. 



Aeronautics and Astronautics - AIDAA XXVII International Congress Materials Research Forum LLC 
Materials Research Proceedings 37 (2023) 547-552  https://doi.org/10.21741/9781644902813-120 
 

 
549 

 
Figure 2 – Closed geometry of the flasher with graphical representation of boundary conditions 

and loads 
In Merlin 2, the most important modelling parameters are the type of discretization of each 

panel, the material properties and the thickness of the geometry elements. The discretization 
alternatives for the analysis are called N4B5, which includes four nodes and five bars for every 
square panel and N5B8, including five nodes and eight bars for every square panel; here, we choose 
the latter.  
 

    
Figure 3 –N5B8 (left) and N4B5 (right) discretization, images from [2] 

The parameters imposed for the material properties come from experimental data on a specific 
textile-based electronics substrate [8], used for the realization of the physical prototype that will 
be subjected to experimental tests to validate the data coming from both models. 

The code allows to obtain a load-displacement curve for any node from the simulation, together 
with information concerning the stored energy of the bending and folding hinges in the geometry. 
The result of our analysis is shown in Figure 4. At large displacements, the load increases 
asymptotically since the deployment is complete at 360 millimeters and any further loading 
engages the high axial stiffness of the panels. The detail of the load-displacement curve, shown on 
the right, shows a gradual increase of the force from zero to 350 millimeters.  

It can also be noticed that the first part of the plot shows a zero load, due to an initial free 
rotation given by the imperfect alignment of the forces in the model. 
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Figure 4 – Full load-displacement curve (left) and partial graph from 0 to 360 mm 

 

Figure 5 – Four configurations of flasher origami pattern during different phases of deployment, 
the numbers next to each configuration are related to the Load-Displacement curve in Figure 4 

Ansys Motion 
The same geometry is imported in the finite element software ANSYS Motion, with the objective 
of obtaining a comparison between the reduced order model and the finite-element one for 
validation purposes. To import a .obj geometry in ANSYS, we first import it in Solidworks, export 
it as a 2D geometry to the Ansys Workbench environment and successively modify it using 
SpaceClaim. 

The material properties imposed to the ANSYS model are the same utilized for the reduced 
order model, with the approximation of elastic isotropic material, which is suitable for the expected 
large deformations and small strains. The contact constraint has been created for every panel to 
accurately model the interaction between the geometric elements. 
 

     
Figure 6 – From left to right: schematics used for constraints enumeration in ANSYS, geometry 

 imported in ANSYS Workbench and geometry discretized using shell elements 
The geometry in the closed configuration is renamed according to Figure 6 (left) to make the 

constraint-imposition process more efficient. The discretization is carried out using shell elements. 
All the boundary conditions and loads have been set up to create a simulation identical to the bar-
and-hinge one. The main difference between the two models is the absence of folding springs in 
the ANSYS one, which causes zero resistance during deployment and therefore does not allow to 
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validate load-displacement curves. As we can see, both models capture the same kinematics of 
deployment. 
 

 

 
Figure 7 - Diagram of deformation in the final configuration 

Conclusions and future developments 
The finite element model and the bar and hinge one capture different aspects of the behaviour of 
the structure. FEM pursues this task through the utilization of higher-order elements, such as 
plates/shells or volumetric elements, with the same amount of information for the material 
properties under the approximation of linear isotropic behaviour. Bar-and-hinge models are an 
efficient tool for approximating the mechanical behaviour of origami structures. Despite their 
simplicity, these models can be used to capture out-of-plane bending and in-plane shearing, 
allowing to obtain a conspicuous amount of information with a reduced computational expense 
compared to the finite element models. 

As a next step, we plan an in-depth analysis of the results of the two models (introducing 
torsional springs in the FEM as well), with a campaign of experimental tests on a physical 
prototype of the origami structure. This will allow a complete validation of the results, as well as 
the opportunity to refine the models and the material properties. 

Up to now, deployment is simulated as outward radial applied displacements. To accurately 
capture the forces exerted on the spacecraft during deployment, we will implement a follower load 
in both models and change the boundary conditions by blocking rotations along the structure’s 
axis; this should allow us to extract the moment produced on the structure during deployment – 
which will be useful to design the actuation device for deployment. 
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