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Abstract. Current space missions require predicting the spacecraft dynamics with considerable 
reliability. Among the various components of a spacecraft, subsystems like payload, structures, 
and power depend heavily on the dynamic behavior of the satellite during its operational life. 
Therefore, to ensure that the results obtained through numerical simulations correspond to the 
actual behavior, an accurate dynamical model must be developed. In this context, an 
implementation of Kane’s method is presented to derive the dynamical equations of a spacecraft 
composed of both rigid and flexible bodies connected via joints in tree topology. Starting from the 
kinematics of two generic interconnected bodies, a systematic approach is derived and the 
recursive structure of the equations is investigated. The Kane’s formulation allows a relatively 
simple derivation of the equation of motion while obtaining the minimum set of differential 
equations, which implies lower computational time. On the other hand, this formulation excludes 
reaction forces and torques from the dynamical equations. Nevertheless, in this work a strategy to 
compute them a posteriori without further numerical integrations is presented. Flexibility is 
introduced through the standard modal decomposition technique, so that modal shapes obtained 
by FEA software can be directly utilized to characterize the elastic motion of the flexible bodies.  
A spacecraft composed of a rigid bus and several flexible appendages is modeled and numerical 
simulations point out that this systematic method is very effective for this illustrative example. 
Introduction 
The advanced level of technology in space missions and the substantial economic investment they 
require necessitate a high level of predictability in all aspects of the mission. The performance of 
critical subsystems, such as the payload, structures, and power subsystem, is directly influenced 
by the dynamic behavior of the satellite throughout its operational lifetime. Therefore, it is crucial 
to develop an accurate dynamical model that ensures the correspondence between numerical 
simulations and the actual behavior of the satellite. While it may be acceptable in some cases to 
model the spacecraft as a single rigid body, typically it is necessary to consider the satellite as a 
multibody system comprising both rigid and flexible elements. Various approaches exist to derive 
the dynamical equations of a multibody system. However, in this work, Kane's formulation is 
exclusively adopted due to its distinct advantages in terms of both algebraic and computational 
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aspects [1]. A practical version of Kane's equation, as provided in [2], has been extended in this 
research to encompass spacecraft consisting of both flexible and rigid bodies. The outcome is a 
concise matrix formulation that is also compatible with the results of modal analysis obtained 
through a finite element code such as NASTRAN.  
Kinematics 
Before providing the general form of Kane’s equation, it is necessary to outline the kinematic 
quantities of interest.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Considering Figs. 1-2, the linear velocity of the connection point iQ  between two flexible bodies 
and the angular velocity of body i, both evaluated with respect to the inertial frame N, are 
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where   denotes an invariant physical vector,  denotes the components of a vector, 
  i i i

i 1 2 3B b b b =   
 is the vectrix associated with the i-th body frame [3], superscript “  ” denotes 

the skew matrix associated with a vector, iΓ  and iΣ  are the i-th rotary and prismatic “joint partial” 
respectively, i.e. the j3 n× matrices ( jn  is the number of degrees of freedom allowed by the joint) 
that, if post multiplied by the i-th joint velocity vector (angular iθ  or linear is ),  provide the relative 
velocity of the i-th body with respect to the (i-1)-th body [2]. Moreover, following the standard 
modal decomposition approach [4], ( ) ( )i

k iPΦ  is the k-th modal shape associated with the i-th body 
and evaluated in the generic point iP  of body i, while kq  is the k-th modal amplitude and Fn  is the 
total number of elastic modes. For the sake of clarity, it is important to notice that 

F1 k nq q q q =     contains the concatenation of the elastic modes of all the flexible bodies 

that compose the structure, so ( ) ( )i
k iPΦ  is a zero vector when k corresponds to the elastic mode of 

a body different from the i-th one. The “Eulerian” velocities of Eqs. 1-2 are a function of the 
generalized velocities, i.e. the minimum-dimension set of velocities that completely describe the 
system dynamics. Considering a typical spacecraft topology and calling the bus “body 1”, the 
vector of generalized velocities shows the following structure: 

Fig. 2: two bodies connected via prismatic 
joint 

Fig. 1: two bodies connected via rotary joint 
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where 1v  and 1ω  are the components of linear and angular velocity of the bus respectively (being 
the root body, 1Q  can be any point of body 1), written with respect to 1B ; the terms in parentheses 

refer to RJN  revolute joints and PJN  prismatic joints, respectively. To pass from generalized 
velocities to the Eulerian ones, it is necessary to introduce the partial velocity matrices, which play 
a crucial role in the Kane’s formulation [5]. Specifically, the B3N 1×  vector ( BN  is the number of 
bodies) containing the velocities of all points iQ  written with respect to iB  is obtained by pre-

multiplying u  by the matrix of linear partial velocities V, while the angular velocities are provided 
by the use of the matrix of angular partial velocities Ω . Both V and Ω  have dimensions B3N n×
, where n is the total number of degrees of freedom of the structure. Each 3 n× block is associated 
with a body, while each column is associated with a single degree of freedom of the system. Thanks 
to recursion, in Eqs. 1-2, it is possible to identify a repeating structure even in the partial velocities. 
Specifically, the i-th DOF3 n× block shows the following structure: 
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where 
i j
R
←

 is the rotation matrix from frame jB  to frame iB , superscript ( )i  in vectors specifies 

the frame with respect the components are written to, j refers to the body downstream of the joint 
whose degrees of freedom are being considered, PJn  is the total number of degrees of freedom 
associated with prismatic joints. Moreover, the last component in Eq. 4 needs the introduction of 
the concept of “kinematic chain” to be explained. The kinematic chain can be seen as a branch of 
the tree topology of the multibody spacecraft. Every kinematic chain starts from the root body 
(body 1) and branches out to one of the terminal bodies: the number of kinematic chains of a 
structure corresponds to the number of end bodies. Hence, the index m in the last term of Eq. 4 
proceeds only along bodies belonging to the same kinematic chain. Furthermore, all the terms in 
parentheses of Eqs. 4-5 must be replaced by blocks of zeros (with consistent dimensions) if the 
two considered bodies do not belong to the same kinematic chain. 

To complete the kinematic description, accelerations must be derived. In Kane’s formulation, 
it is important to identify the terms of the accelerations that do not depend on the time derivative 
of the generalized velocities. These terms are called “remainder accelerations” and, with reference 
to the building blocks in Figs. 1-2, show the following structure:  
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Actually, even in this case the structure must follow the scheme of kinematic chains: the passage 
from body i-1 to body i must be intended as a passage between two consecutive bodies on the same 
kinematic chain, not as a passage between two bodies with consecutive numeration. As for the last 
term of Eq. 4, the index m in Eq. 8 proceeds along the kinematic chains, not following the 
consecutive numeration. 
Kane’s equations 
Applying the Kane’s procedure to derive the dynamics of a multibody structure, the following 
expression is obtained: 
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where
F R F Fn n n n0 I× × ∆ =   , being R Fn  and n  the rigid and flexible degrees of freedom respectively 

of the whole system, M, S and J  are matrices containing masses, static moments and inertia 
moments respectively, B and C  are matrices containing translation and rotation modal 
participation factors respectively of all the flexible bodies of the structure; Y  is the modal mass 
matrix, ( ) ( )R Ra  and α  are B3N 1×  vectors containing respectively linear and angular remainder 
accelerations of all the bodies, subscript F  in vectors and matrices indicates that only rows 
associated with flexible bodies must be retained, ω  is the B3N 1×  vector containing the angular 
velocities of all the bodies, N, L and D are three other modal integrals (in addition to B, C and G ), 
K  is the stiffness matrix, Z  is the damping matrix, f̂  is the vector containing the generalized 
active forces, i.e. the projection of external and interface forces and torques along the directions of 
partial velocities [5]. The structure of the terms appearing in Eq. 9 are reported in the Appendix. 
Extraction of constraint reactions 
The unavailability of constraint reactions is a significant limitation in Kane's formulation. 
However, for spacecraft with a tree topology configuration, it is possible to reconstruct the time 
histories of constraint reactions quite easily through a post-processing approach that relies on 
Newton/Euler equations, following the numerical integration of Kane's equations. In fact, unlike 
Kane's method, the Newton/Euler formulation for multibody structures incorporates constraint 
reactions in the state vector (however, this inclusion leads to longer computational times) [1, 6]. 
The procedure follows the subsequent steps: after the numerical solution of Kane's equations, one 
obtains ( )u t and ( )u t . Then, by utilizing the partial velocities and remainder accelerations, it is 
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possible to reconstruct the temporal profiles of velocities and accelerations for all bodies within 
the structure. As a result, the constraint reactions become the only unknowns in the Newton-Euler 
equations that can be resolved through a post-processing module. During this operation, a top-
down approach is necessary, starting from the bodies at the end of the kinematic chains. This is 
because each of these bodies has only a single joint, and one can then proceed backward along the 
kinematic chain toward the root body.  In the example of Fig. 4,  

 
 
 
 

 
 
 
 
 
 
 
 

the constraint reactions must be computed first in joints Q3, Q4 and Q6, and then in joints Q2 and 
Q5. The order of computing reactions for joints with the same subordination ranking can be any. 

 
    
 
 
 
 
 

Illustratuive simulation 
results 
The presented formulation has been implemented in a numerical code to simulate the dynamic 
behavior of Explorer I, which is the same case studied in Reference [2]. The spacecraft consists of 
a cylindrical rigid bus and four appendages connected to the bus, as depicted in Figure 5. Similarly 
to the study in Reference [2], this investigation focuses on the spontaneous transition from a minor-
axis to a major-axis spin caused by damping effects in the structure. However, there is a difference 
in the approach: while the analysis reported in [2] considered the appendages as rigid and 
introduced flexibility by incorporating a torsional spring-damper system at the interfaces between 
the appendages and the bus, in this work, the appendages are directly treated as flexible beams 
attached to the central the body of the spacecraft. Figure 6 illustrates the expected behavior of the 
bus angular velocity components, which exhibit the previously mentioned transition of the 
rotational behavior. 
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Fig. 4: example of top-down logic in deriving the constraint 
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Concluding remarks 
A revised formulation of Kane's dynamical equations for a flexible multibody spacecraft is 
presented. By conducting a kinematic analysis, the expressions for partial velocities and remainder 
accelerations are derived, while emphasizing their recursive nature. The complete matrix 
formulation is provided, along with a proposed strategy for determining constraint reactions. 
Additionally, a numerical implementation of the formulation at hand is presented using the case 
of the Explorer I mission. 
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APPENDIX 
A1. mass distribution and modal integrals 
In the following expressions, the index “j” indicates the body, while the indices “k” and “l” identify 
the elastic mode. 
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F
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j 1 j
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N
T j

T j 2 j
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N
T j

j n j
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L

L
L

L

=

=

=

 
ω ω 

 
 
 ω ω

 ω ω =     
 
 
 ω ω
  

∑

∑

∑



 

B,F F

B,F F

B,F F

F

N n
T j

j 1k k
j 1 k 1

N n
T j

T j 2k k
j 1 k 1

N n
T j

j n k k
j 1 k 1

d q

d q
d

d q

= =

= =

= =

  
ω  

 
   ω   ω =     

   ω   

∑ ∑

∑ ∑

∑ ∑









 

 
 

 
 
 
 
 

( )

( )

R R

F

n n

2
1

2

n

0

0 0
K 0 0

0 0

× 
 

λ 
=  
 
 λ  


 

R R

F F

n n

1 1

n n

0

2 0 0
Z

0 0
0 0 2

× 


ζ λ= 


ζ λ 


 

kλ  is the natural frequency 
of the k-th elastic mode 

 kζ  is the damping factor of 
the k-th mode 
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